Proposed Subdivision Stages 3 & 4 Pitt Street, Teralba Geotechnical Assessment

Pitt Street, Teralba

NEW15P-0070-AA.Rev1 28 August 2015

GEOTECHNICAL I LABORATORY I EARTHWORKS I QUARRY I CONSTRUCTION MATERIAL TESTING

28 August 2015

McCloy Group Suite 1, Level 3, 426 King Street NEWCASTLE WEST NSW 2309

Attention: Jon Hines

Dear Sir

RE: PROPOSED SUBDIVISION - STAGES 3 & 4 PITT STREET, TERALBA GEOTECHNICAL ASSESSMENT

Please find enclosed our Geotechnical Assessment report for the proposed residential subdivision of Stages 3 & 4, Pitt Street, Teralba.

The report includes recommendations for Site Classification in accordance with AS2870-2011, "Residential Slabs and Footings", pavement design and construction for internal subdivision roads, retaining wall design parameters and assessment of excavation conditions.

Qualtest have previously provided a Geotechnical Assessment report for the proposed subdivision (Reference: NEW15P-0070-AA, 13 July 2015). This revised report incorporates comments and recommendations on pavement design from Lake Macquarie City Council assessment letter (Reference: SCC/26/2015, 7 August 2015).

If you have any questions regarding this report, please do not hesitate to contact Alan Cullen or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Esc Le.

Jason Lee Principal Geotechnical Engineer

Table of Contents:

1.0		INTRODUCTION1
2.0		FIELD WORK1
3.0		SITE DESCRIPTION
	3.1	Surface Conditions2
	3.2	Subsurface Conditions2
4.0		LABORATORY TESTING
5.0		DISCUSSION AND RECOMMENDATIONS
	5.1	Site Classification to AS2870-2011
	5.2	Pavement Design7
	5.2.1	Design Subgrade CBR Values7
	5.2.2	Design Traffic Loadings7
	5.2.3	Flexible Pavement Thickness Design
	5.3	Excavation Conditions and Depth to Rock10
	5.4	Recommended Batter Slopes11
	5.5	Retaining Wall Foundation Design Parameters12
	5.6	Site Preparation12
	5.7	Fill Construction Procedures13
	5.8	Suitability of Site Materials for Re-Use as Fill14
	5.9	Special Construction Requirements and Site Drainage14
6.0		LIMITATIONS15

Attachments:

Figure AA1:	Approximate Test Pit Location Plan
Appendix A:	Results of Field Investigations
Appendix B:	Results of Laboratory Testing
Appendix C:	Results of Previous Investigations by Cardno
Appendix D:	CSIRO Sheet BTF 18

1.0 INTRODUCTION

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this report on behalf of McCloy Group (McCloy), for the proposed residential subdivision of Stages 3 & 4, Pitt Street, Teralba.

Based on drawings of the proposed subdivision provided by McCloy, the proposed development is understood to comprise subdivision into 38 residential lots for Stage 3 (Lots 301 to 338), 38 residential lots for Stage 4 (Lots 401 to 438), and construction of road pavements for internal subdivision roads as shown on Figure AA1.

The scope of work for the geotechnical investigation included providing discussion and recommendations on the following:

- Site classification to AS2870-2011, "Residential Slabs and Footings" for residential lots within Stages 3 & 4.
- Pavement design for subdivision roads;
- Retaining wall design parameters;
- Recommendations for earthworks guidelines, including stability of cuttings, excavation conditions, and the suitability of the site soils for use as fill an on fill construction procedures;

This report presents the results of the field work investigations and laboratory testing, and provides recommendations for the scope outlined above.

2.0 FIELD WORK

Field work investigations were carried out on 22 June 2015 and comprised of:

- DBYD search of proposed test locations was undertaken to clear proposed test locations for the presence of underground services;
- Site walkover to make observations of surface features at the property and in the immediate surrounding area;
- Excavation of 18 test pits (TP01 to TP18) using a 20 tonne tracked excavator equipped with a 600mm wide toothed bucket, to depths of between 0.45m to 2.50m, within the proposed subdivision area;
- Bulk disturbed samples, undisturbed samples (U50 tubes), and small bag samples were taken for subsequent laboratory testing;
- Test pits were backfilled with the excavation spoil and compacted using the excavator bucket and tracks.

Investigations were carried out by an experienced Principal Geotechnical Engineer and Principal Geotechnician from Qualtest, who located the test pits, carried out the sampling and testing, and provided field logs.

Test pits were located relative to road centreline pegs installed by project surveyors and existing site features. Reduced levels of the test pits have been interpolated from the survey plans provided. Approximate test pit locations are shown on the attached Figure AA1.

Engineering logs of the test pits are presented in Appendix A.

Fieldwork and laboratory testing data from previous work conducted by Cardno Geotech Solutions on the adjoining Stage 2 (Ref: CGS1785, dated 19 December 2014), has been used to supplement information collected during the current investigations where applicable. Copies of the relevant test pit logs and laboratory test certificates are presented in Appendix C.

3.0 SITE DESCRIPTION

3.1 Surface Conditions

The site comprises Stages 3 & 4 of the proposed subdivision at Pitt Street, Teralba, as shown on Figure AA1 attached. The site is located to the south of the existing Stage 1 & 2 subdivision development, accessed off the end of Pitt Street.

The site is bounded by existing residential development and the current Stage 1 & 2 subdivision under construction to the north and north west. Undeveloped bushland, future stages of the subdivision development and future open space bound the remainder of the site, with the Main Northern Railway looping around the north, east and southern boundary of the entire development area.

The site is located within a region of gently to moderately undulating topography, on the southern facing upper to middle slopes of a prominent east trending spur. Site slopes generally vary from about 5° to 6° over the majority of the site, increasing up to angles in the order of about 8° to 10° on the upper slopes in the northern portion of the site, and 10° to 12° locally along the sides of a gully that runs along the southern boundary of the site.

Ground levels are generally in the range from about RL 51m (AHD) at the northern end of the site, falling to about RL 16m (AHD) on the southern end of the site.

The site is typically covered by undeveloped bushland, vegetated by a moderate to dense coverage of mature trees with an undergrowth of native shrubs, bushes and grass cover. A number of access tracks cross the site to provide access.

On the day of the investigation which was carried out following a period of wet weather, the majority of the site was judged to be moderately drained by way of surface runoff following the natural topography towards an incised gully that runs roughly along the southern boundary of the site, with infiltration during wet weather causing the near surface topsoil and colluvium soils to become wet and boggy in places. Trafficability was judged to be moderate by way of 4WD vehicle along the existing access tracks.

3.2 Subsurface Conditions

Reference to the 1:100,000 Newcastle Coalfield Regional Geology Sheet indicates the site to be underlain by the Clifton Subgroup of the Narrabeen Group, and Moon Island Beach Subgroup of the Newcastle Coal Measures, which are characterised by Conglomerate, Sandstone, Siltstone, Claystone, Tuff and Coal rock types.

Table 1 presents a summary of the typical soil types encountered at test pit locations during the field investigation, divided into representative geotechnical units.

Table 2 contains a summary of the distribution of the above geotechnical units at the test pit locations.

Unit	Soil Type	Description
1	TOPSOIL	Silty Clayey SAND - fine to medium grained, grey to brown, fines of low plasticity, root affected.
2	COLLUVIUM	Silty Clayey SAND, fine to medium grained, pale grey, grey and brown, fines of low plasticity; and Sandy CLAY, medium to high plasticity, pale brown yellow, sand fine to coarse grained.
3	RESIDUAL SOIL	Sandy CLAY, medium plasticity and medium to high plasticity, pale grey-brown, yellow-brown and mottled red-grey, sand fine to coarse grained; With depth grading into a Silty Sandy CLAY in places, sand content increasing, with some ironstone staining.
4	EXTREMELY WEATHERED ROCK	SANDSTONE, fine to medium grained, pale brown, pale grey- brown and red, assessed to be of low strength rock; CONGLOMERATE, excavating as a Clayey Sandy GRAVEL, fine to coarse grained pale brown-yellow.
5	HIGHLY WEATHERED ROCK	SANDSTONE, fine to medium grained, pale brown, pale grey- brown and red, assessed to be medium to high strength rock, with some very high strength bands;

TABLE 1 – SUMMARY OF GEOTECHNICAL UNITS AND SOIL TYPES

The Unit 5 Highly Weathered Rock was encountered as indicated on the appended engineering logs and summarised in Table 2.

Test pits TP02, TP03 and TP16 located on the upper slopes of the ridge / spur line were terminated due to practical refusal of the 20 tonne excavator within highly weathered rock at depths of 0.70m, 0.45m and 0.60m, respectively.

Test pits TP05, TP08, TP11, TP15 and TP17 were terminated due to practical refusal of the 20 tonne excavator within highly weathered rock at depths varying from 1.1m to 2.2m.

The remaining test pits were terminated due to target depths being achieved.

No groundwater levels were encountered in the test pits during the limited time that they remained open on the day of the field investigations.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.

Location	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5
	Topsoil	Colluvium	Residual	Extremely Weathered	Highly Weathered
				Rock	Rock
		D	epth in metres (r	n)	
TP01	0.00 - 0.30	-	0.30 - 3.00	-	-
TP02	0.00 - 0.20	-	0.20 - 0.60	-	0.60 - 0.70 *
TP03	0.00 - 0.20	-	0.20 - 0.35	-	0.35 - 0.45 *
TP04	0.00 - 0.30	0.30 - 0.80	0.80 - 2.30	-	2.30 - 2.50
TP05	0.00 - 0.13	0.13 - 0.25	0.25 - 1.40	-	1.40 - 1.60 *
TP06	0.00 - 0.20	-	0.20 - 2.20	-	-
TP07	0.00 - 0.10	0.10 - 0.20	0.20 - 2.40	-	-
TP08	0.00 - 0.15	0.15 - 0.30	0.30 - 1.10	-	1.10 - 1.90 *
TP09	0.00 - 0.15	0.15 - 0.30	0.30 - 2.00	-	-
TP10	0.00 - 0.25	0.25 - 0.50	0.50 - 2.00	-	-
TP11	0.00 - 0.20	-	0.20 - 0.80	-	0.80 - 1.10 *
TP12	0.00 - 0.20	0.20 - 0.40	0.40 - 1.80	-	1.80 - 2.20
TP13	0.00 - 0.15	0.15 - 0.30	0.30 - 1.80	-	1.80 - 2.10
TP14	0.00 - 0.30	-	0.30 - 2.10	-	-
TP15	0.00 - 0.15	0.15 - 0.30	0.30 - 1.40	-	1.40 - 1.60 *
TP16	0.00 - 0.10	-	0.10 - 0.50	-	0.50 - 0.60 *
TP17	0.00 - 0.20	0.20 - 0.40	0.40 - 2.00	-	2.00 - 2.20
TP18	0.00 - 0.13	0.13 - 0.25	0.25 - 1.30	1.30 - 2.20	-
Notes:	* = Practical refusal of 20 tonne excavator met on Highly Weathered Rock.				

TABLE 2 – SUMMARY OF GEOTECHNICAL UNITS ENCOUNTERED AT EACH TEST PIT LOCATION

4.0 LABORATORY TESTING

Samples collected during the field investigations were returned to our NATA accredited Warabrook Laboratory for testing which comprised of:

- (6 no.) Shrink / Swell tests;
- (3 no.) Atterberg Limit tests;
- (6 no.) California Bearing Ratio (4 day soaked) & Standard Compaction.

Results of the laboratory testing are presented in Appendix B, with a summary of the Shrink/Swell, Atterberg Limits, and CBR test results presented in Tables 3, 4 and 5.

Location	Depth (m)	Material Description	Iss (%)
TP09	0.40 - 0.70	Sandy CLAY	4.1
TP11	0.50 – 0.80	Sandy CLAY	1.6
TP13	0.40 - 0.70	Sandy CLAY	1.1
TP13	1.10 - 1.40	Sandy CLAY	0.6
TP15	0.40 - 0.70	Sandy CLAY	2.0
TP18	0.40 - 0.70	CLAY / Sandy CLAY	0.9

TABLE 3 – SUMMARY OF SHRINK / SWELL TESTING RESULTS

TABLE 4 – SUMMARY OF ATTERBERG LIMITS TESTING RESULTS

Location	Depth (m)	Material Description	Liquid Limit (%)	Plasticity Index (%)	Linear Shrinkage (%)
TP06	0.40 - 0.80	Sandy CLAY	19	7	2.5
TP07	0.40 - 0.70	Sandy CLAY	56	40	6.5
TP17	0.40 - 0.80	Sandy CLAY	36	19	5.0

TABLE 5 – SUMMARY OF CBR TESTING RESULTS

Location	Depth (m)	Field Moisture Content (%)	Optimum Moisture Content (%)	Relationship of Field MC to OMC (%)	CBR (%)
TP04	0.40 - 0.60	23.1	23.5	0.4 dry	4.0
TP05	0.50 - 0.80	20.3	21.7	1.4 dry	4.0
TP12	0.50 - 0.80	29.5	26.4	3.1 wet	3.5
TP14	0.30 – 0.60	20.6	18.6	2.0 wet	9
TP17	0.40 - 0.80	15.1	14.6	0.5 wet	7
TP18	0.40 - 0.70	28.6	23.8	4.8 wet	6
Cardno Geotech Solutions - CBR testing (Ref: CGS1785, 19 December 2014)					
TP203	0.40 - 0.80	9.6	14.2	4.6 dry	11
TP206	0.50 – 0.90	11.6	15.5	3.9 dry	17

Table 6 also include a summary of laboratory testing information where applicable from the previous Report on Geotechnical Investigation by Cardno Geotech Solutions (CGS) from the adjoining proposed Stage 2 development (Ref: CGS1785, 19 December 2014), with a copy of the CGS test results included in Appendix C.

5.0 DISCUSSION AND RECOMMENDATIONS

5.1 Site Classification to AS2870-2011

Based on the results of the field work and laboratory testing, residential lots located within the proposed subdivision of Stages 3 & 4, Pitt Street, Teralba, as shown on Figure AA1, are classified in their current condition in accordance with AS2870-2011 '*Residential Slabs and Footings*', as shown in Table 6.

Lot Numbers	Site Classification
Stage 3 – Lots 301 to 338	м
Stage 4 – Lots 401 to 438	м

TABLE 6 - SITE CLASSIFICATION TO AS2870-2011

If site re-grading works involving cutting or filling are performed after the date of this assessment, the classification may change and further advice should be sought.

Final site classification will be dependent on a number of factors, including depth of topsoil, depth of fill and residual soil, reactivity of the natural soil and any fill material placed, and the level of supervision carried out. Re-classification of lots should be confirmed by the geotechnical authority at the time of construction following any site re-grade works.

A characteristic free surface movement of 20mm to 40mm is estimated for the lots classified as **Class 'M'** in their existing condition. The effects of changes to the soil profile by additional cutting and filling and the effects of past and future trees should be considered in selection of the design value for differential movement.

Footings for the proposed development should be designed and constructed in accordance with the requirements of AS2870-2011.

The classification presented above assumes that:

- All footings are founded in controlled fill (if applicable) or in the residual clayey soils or rock below all non-controlled fill, topsoil material and root zones, and fill under slab panels meets the requirements of AS2870-2011, in particular, the root zone must be removed prior to the placement of fill materials beneath slabs;
- The performance expectations set out in Appendix B of AS2870-2011 are acceptable, and that site foundation maintenance is undertaken to avoid extremes of wetting and drying;
- Footings are to be founded outside of or below all zones of influence resulting from existing or future service trenches;
- The constructional and architectural requirements for reactive clay sites set out in AS2870-2011 are followed;
- Adherence to the detailing requirement outlined in Section 5 of AS2870-2011 'Residential Slabs and Footings' is essential, in particular Section 5.6, 'Additional requirements for Classes M, H1, H2 and E sites' including architectural restrictions, plumbing and drainage requirements;
- Site maintenance complies with the provisions of CSIRO Sheet BTF 18, "Foundation Maintenance and Footing Performance: A Homeowner's Guide", a copy of which is attached in Appendix D.

All structural elements on all lots should be supported on footings founded beneath all uncontrolled fill, layers of inadequate bearing capacity, soft/loose, wet or other potentially deleterious material.

If any localised areas of uncontrolled fill of depths greater than 0.4m are encountered during construction, footings should be designed in accordance with engineering principles for Class 'P' sites.

5.2 Pavement Design

5.2.1 Design Subgrade CBR Values

Based on the results of the field work, laboratory testing, and previous experience in the surrounding area, the following design California Bearing Ratio (CBR) value has been adopted for pavement thickness design for proposed internal subdivision roads.

Subgrade Material	Design CBR (%)	Comment
Residual Clay Soil	3.5	All road sections unless stated otherwise
Residual Clay Soil	5.0	Pitt Street, Ch. 660m to 875m
Weathered Rock	8.0	Ripped and re-compacted

 TABLE 7 – DESIGN SUBGRADE CBR VALUES
 Page 2010

Fill placed at road subgrade level should be assessed by a geotechnical authority. If the fill is assessed to have a CBR different to that of the design CBR, then a revised pavement design will be required for that section.

Subgrade should be prepared in accordance with the site preparation requirements presented in Section 5.4.

5.2.2 Design Traffic Loadings

The design traffic loading adopted for internal subdivision roads in accordance with Lake Macquarie City Council, Engineering Guidelines to The Development Control Plan, Part 1 – Design Guidelines, December 2013, in terms of equivalent standard axles (ESA's) is as follows:

Road Section	Classification	Design Traffic (ESA's)
Pitt Street	Collector Road	4 x 10 ⁶
Bowline Street	Local Road	4 x 10 ⁵
Sail Street	Primary or Secondary	
Outrigger Drive		
Road No. 6		

TABLE 8 – DESIGN TRAFFIC LOADING

In the event that a different design traffic loading is applicable, then the pavement thickness designs presented in this report should be reviewed.

5.2.3 Flexible Pavement Thickness Design

Flexible pavement thickness design has been based on the procedures outlined in:

- Lake Macquarie Development Control Plan 2014, Part 8 Subdivision Development, February 2014 – Revision 3;
- Lake Macquarie City Council, Engineering Guidelines to The Development Control Plan, Part 1 – Design Guidelines, December 2013;
- Lake Macquarie City Council, Engineering Guideline Part 1 Design Specification, D2 Pavement Design, September 2003;
- Austroads, "Guide to Pavement Technology, Part 2: Pavement Structural Design".
- Australian Road Research Board, Special Report No. 41 (ARRB-SR41);

Flexible Pavement Thickness Designs are presented in Table 9 and Table 10.

Road Classification	Collector Road (Pitt Street)			
Road Section	300m – 660m	660m - 875m	Clay Subgrade	
Design Traffic Loading (ESA's)	4 x 10 ⁶	4 x 10 ⁶	4 x 10 ⁶	
Design Subgrade CBR (%)	8.0	5.0	3.5	
Wearing Course (mm)	45 – AC14 (Dense Graded)	45 - AC14 (Dense Graded)	45 - AC14 (Dense Graded)	
Base Course (mm)	150	150	150	
Subbase (mm)	150	250	360	
Select Fill (mm)	-	-	-	
Total Thickness (mm)	345	445	555	

TABLE 9 – FLEXIBLE PAVEMENT THICKNESS DESIGN SUMMARY

<u>Notes:</u>

- 1) A 7mm primer seal should be placed over the base course prior to placement of the asphaltic concrete wearing course.
- 2) An allowance for subgrade replacement should be anticipated in any areas where poor, wet or saturated subgrade conditions are encountered.
- 3) The requirement for, and depth and extent of any subgrade replacement / select filling, should be confirmed by the geotechnical authority at the time of construction.
- 4) Where rock subgrade materials are encountered, the rock should be ripped and recompacted for a minimum depth of 300mm to break-up preferential drainage paths and provide a dense homogenous surface on which to construct the pavement.
- 5) Prior to pavement construction, the exposed subgrade should be assessed by the geotechnical authority to confirm the pavement thickness requirement for that section.
- 6) Wearing course to be a minimum of 3 times the nominal mix size as specified by LMCC.

Road Classification	Local Road – Primary or Secondary		
Road Section	Weathered Rock Subgrade	Clay Subgrade	
Design Traffic Loading (ESA's)	4 x 10 ⁵	4 x 10 ⁵	
Design Subgrade CBR (%)	8.0	3.5	
Wearing Course (mm)	30 – AC10 (Gap Graded)	30 - AC10 (Gap Graded)	
Base Course (mm)	150	150	
Subbase (mm)	150	250	
Select Fill (mm)	-	-	
Total Thickness (mm)	330	430	

TABLE 10 – FLEXIBLE PAVEMENT THICKNESS DESIGN SUMMARY

Notes:

1) A 7mm primer seal should be placed over the base course prior to placement of the asphaltic concrete wearing course.

- 2) An allowance for subgrade replacement should be anticipated in any areas where poor, wet or saturated subgrade conditions are encountered. As specified by LMCC, 'Where such situations arise, a minimum of 300mm thick select layer shall be provided in addition to the recommended pavement thickness included in Table 10'.
- 3) The requirement for, and depth and extent of any subgrade replacement / select filling, should be confirmed by the geotechnical authority at the time of construction.
- 4) Where rock subgrade materials are encountered, the rock should be ripped and recompacted for a minimum depth of 300mm to break-up preferential drainage paths and provide a dense homogenous surface on which to construct the pavement.
- 5) Prior to pavement construction, the exposed subgrade should be assessed by the geotechnical authority to confirm the pavement thickness requirement for that section.
- 6) Wearing course to be a minimum of 3 times the nominal mix size as specified by LMCC.

A select fill or bridging layer should be allowed for beneath the pavement in any areas where poor, wet or saturated subgrade conditions are encountered. This is discussed in Section 5.4.

If rock subgrade materials are encountered, the rock should be ripped and re-compacted for a minimum depth of 300mm to break-up preferential drainage paths and provide a dense homogenous surface on which to construct the pavement. Pavement thickness designs for a ripped and re-compacted rock subgrade based on a design subgrade CBR of 8% is provided.

It is recommended that each construction length be boxed out to the minimum subgrade level required by the relevant pavement thickness design. Prior to pavement construction, the exposed subgrade should be assessed by the geotechnical authority to confirm the pavement thickness requirement for that section. Pavement Material Specification and Compaction Requirements are presented in Table 11.

Pavement Course	Material Specification	Compaction Requirements
Wearing Course (AC)	Lake Macquarie City Council Specification	Lake Macquarie City Council Specification
Base Course	CBR ≥ 80%, PI ≤ 6%	98% Modified (AS1289 5.2.1)
Subbase	CBR ≥ 30%, PI ≤ 12%	95% Modified (A\$1289 5.2.1)
Select Fill / Stabilised Subgrade	Select, CBR ≥ 15%, PI ≤ 15%, max particle size 75mm	95% Modified (AS1289 5.2.1)
	Or	
	* Stabilised Subgrade	
Subgrade (top 300mm)	Minimum CBR = 3.5%	100% Standard (AS1289 5.1.1)
Subgrade / Fill Below	Minimum CBR = 3.5%	95% Standard (AS1289 5.1.1)

Notes:

- 1) Pavement materials for base course and subbase shall also comply with Lake Macquarie City Council Engineering Guideline, Part 2 Construction Specification, C242 Flexible Pavements, Tables C242.3 and C242.4.
- 2) CBR = California Bearing Ratio, PI = Plasticity Index.
- 3) Select Fill / Stabilised Subgrade options if required and/or adopted will be dependent on subgrade moisture conditions.

5.3 Excavation Conditions and Depth to Rock

The depths of fill, topsoil, colluvium, residual soils and weathered rock, together with depths of practical refusal of the 20 tonne excavator where encountered are summarised in Table 2.

In terms of excavation conditions, site materials can generally be divided into:

- Clayey and Granular Soils (Units 1, 2, & 3). It is anticipated that these materials could be excavated by a conventional excavator or backhoe bucket;
- Weathered Rock (Unit 4 & 5). Rippability is dependent on rock strength, depth, degree of weathering and number of defects within the rock mass which can vary significantly.

It is anticipated that the Weathered Rock (Unit 4 & 5) material encountered could be excavated by conventional 20 tonne excavator or equivalent at least to the depths indicated on the appended test pit logs.

It is expected that material below the depth of 20 tonne excavator bucket refusal will be excavatable by ripping to some greater depth, although this has not been assessed as part of the current investigation;

It is recommended that targeted investigations (e.g. cored boreholes) are carried out if significant excavations are proposed where bedrock depth or excavatability is important to design or construction.

The use of toothed buckets, ripping tynes, and/or hydraulic rock hammers may be required if hard bands of weathered rock are encountered or for deep confined excavations such as for service trenches. Higher strength rock or randomly occurring hard bands within the rock mass if encountered, are likely to occur towards the base of deeper cuts.

Preliminary recommendations based on excavation with a 20 tone excavator (noting practical refusal was met at relatively shallow depths) in the area of major cuttings are as follows:

- The majority of the rock is in the medium to high rock strength range, slightly fractured, with variable fracture spacings.
- Based on the findings it would be expected that in a large bulk excavation such as that proposed, where ripping directions can be adjusted readily to optimise ripping direction relative to fracture orientation, the majority of rock would be excavatable by a medium to large dozer such as a Caterpillar D9 or equivalent equipped with a single ripping tyne.
- Isolated beds of high to very high strength rock are likely to be encountered. If these bands are highly fractured, they should still be rippable, but may require additional effort such as impact ripping or a larger dozer.
- It is recommended that an allowance for rock breakers or pre-splitting prior to ripping be made for areas where such hard bands may be encountered.

Groundwater may exist at localised areas of the site such as within the topsoil / colluvium profile, from water perched above the residual clay / bedrock profile, or in areas of former drainage channels. It is possible that slow water inflow may be encountered from such layers, particularly if earthworks are carried out during or following periods of wet weather.

Care should be taken not to disturb or destabilise existing underground services or structures.

5.4 Recommended Batter Slopes

Recommended batter slopes for each inferred geotechnical unit are summarised in Table 12.

GEOTECHNICAL		MAXIMUM SLOPE OF EXCAVATED UNSUPPORTED BATTER						
UNIT	MATERIAL TYPE	Temporary Excavations *	Permanent Excavations					
UNIT 1 & 2	Topsoil & Colluvium	1V:1H	1V:3H					
UNIT 3	Residual Soil	1V:1H	1V:2H					
UNIT 4	Extremely Weathered Rock	1V:0.5H	1V:1.5H					
UNIT 5	Highly Weathered Rock	1V:1H						
NOTE: * Subject orientat	ct to inspection during excavation to a ted defects or other conditions that ca	check for water inflo ould affect stability (ow, adversely of the slope.					

TABLE 12 - RECOMMENDED BATTER SLOPES

The safe working procedures of Work Cover NSW Excavation work code of practice, dated July 2014 should be followed.

5.5 Retaining Wall Foundation Design Parameters

Retaining walls backfilled with a free draining granular material may be designed for an active earth pressure coefficient (k_a) of 0.33 and a passive earth pressure coefficient (k_p) of 3.0 and a total density of 1.9 t/m³, or alternatively the values shown in Table 13 may be adopted.

Allowance should be made for in the design of retention measures to resist hydrostatic pressures due to groundwater build-up in addition to earth pressures.

The parameters outlined in Table 13 may be used for retaining wall design. It is recommended that the design does not allow for any geotechnical strength for any uncontrolled fill if present.

Soil Description	γ (kN/m³)	Su (kPa)	c' (kPa)	φ' (°)	Ev (MPa)	Eh (MPa)	ν	
Controlled Fill (cohesive)	19	75	5	27	15	11	0.35	
Residual Soil (very stiff or better)	19	75	5	27	15	11	0.35	
Extremely to Highly Weathered Rock	21	300	5	37	60	45	0.35	

TABLE 13 – GEOTECHNICAL SOIL PARAMETERS

<u>Note:</u>

 γ = Unit Weight S_u = Undrained Shear Strength

c' = Effective Cohesion

 ϕ' = Effective Friction Angle E_v = Vertical Young's Modulus

E_h = Young's Modulus

v = Poisson's Ratio

During progressive placement of fill behind the retaining wall it will displace outwards slightly. It is therefore recommended that the wall have an initial inward slope in the order of 5° prior to placement of fill.

An at rest earth pressure coefficient (k_o) should be used instead of an active earth pressure coefficient (K_a) behind the retaining structures for any walls that are relatively rigid and/or propped such as box culvert structures.

5.6 Site Preparation

Site preparation and earthworks suitable for pavement support and site re-grading should consist of:

- Following any bulk excavation to proposed subgrade level, all areas of proposed pavement construction or site re-grading should be stripped to remove all existing uncontrolled fill, vegetation, topsoil, root affected or other potentially deleterious materials;
- Stripping is generally expected to be required to depths of about 0.1m to 0.3m to remove topsoil and root affected material;
- Additional stripping may be required in any areas where poor, wet or saturated subgrade conditions are encountered;

- Following stripping, the exposed subgrade should be proof rolled (minimum 10 tonne static roller), to identify any wet or excessively deflecting material. Any such areas should be over excavated and backfilled with an approved select material;
- The moisture content of the subgrade materials and therefore the need for moisture conditioning or over-excavation and replacement, will be largely dependent on preexisting and prevailing weather conditions at the time of construction;
- Subgrade preparation should be carried out using a tracked excavator equipped with a smooth sided ('gummy') bucket to minimise the risk of over-disturbance of soils;
- Protect the area after subgrade preparation to maintain moisture content as far as practicable. The placement of subbase gravel would normally provide adequate protection;
- Site preparation should include provision of drainage and erosion control as required, as well as sedimentation control measures.

At the time of the field investigation, moisture content for the clay subgrade material tested varied from 1.4% dry to 4.8% wet of standard Optimum Moisture Content (OMC). It should therefore be anticipated that moisture conditioning of the subgrade may be necessary prior to compaction and placement of pavement materials.

The required time period to prepare the subgrade is likely to be dependent on the prevailing weather conditions at the time of construction.

If over-wet subgrades exist at the time of construction or deleterious materials are encountered at subgrade level, these materials should be over-excavated and be replaced with a minimum depth of 250mm of well graded granular select material with CBR of 15% or greater. The requirement for, and extent of subgrade replacement / select filling, should be confirmed by the geotechnical authority at the time of construction.

5.7 Fill Construction Procedures

Earthworks for pavement construction or support of foundations should consist of the following measures:

- Approved fill beneath pavements should be compacted in layers not exceeding 300mm loose thickness to the compaction requirements provided in Table 11;
- The top 300mm of natural subgrade below pavements or the final 300mm of road subgrade fill should be compacted to provide a subgrade that is within the moisture range of 60% to 90% of Optimum Moisture Content (OMC);
- Site fill beneath structures should be compacted to a minimum density ratio of 98% Standard Compaction within ±2% of OMC in cohesive soils;
- All fill should be supported by properly designed and constructed retaining walls or else battered at 1V:2H or flatter and protected against erosion;
- Where fill is to be placed on slopes in excess of 1V:8H (7°), a prepared surface should be benched or stepped into the natural slope;
- Earthworks should be carried out in accordance with the recommendations outlined in AS3798-2007 'Guidelines for Earthworks for Commercial and Residential Developments'.

5.8 Suitability of Site Materials for Re-Use as Fill

The following comments are made with respect to suitability of site materials for re-use as fill:

- Unit 1 Topsoil materials are expected to be suitable for landscaping purposes only;
- Unit 2 Colluvium may be variable and suitability for re-use should be confirmed at the time of construction. These materials will likely require some moisture conditioning;
- Unit 3 Residual Soils are generally expected to be suitable for re-use as general fill for engineering purposes. These materials will likely require some moisture conditioning;
- Unit 4 Extremely Weathered Rock and Unit 5 Highly Weathered Rock are generally expected to be suitable for re-use as general fill for engineering purposes.

Final selection of fill materials should consider properties such as reactivity which is typically moderate for site won Unit 3 Residual Soils, and low to moderate for site won Unit 4 Extremely Weathered Rock and Unit 5 Highly Weathered Rock.

The suitability of material for re-use should be assessed and confirmed by the geotechnical authority at the time of construction.

5.9 Special Construction Requirements and Site Drainage

The enclosed pavement thickness designs assume the provision of adequate surface and subsurface drainage of the pavement and adjacent areas. As a minimum, it is recommended that subsoil drains be installed:

- Along the high side of roads aligned across site slopes;
- Along both sides of roads aligned down slope.

It is recommended that surface and subsoil drainage be installed in line with the above advice, and in accordance with Lake Macquarie City Council (LMCC) specifications.

Adequate surface and subsurface drainage should be installed and connected to the stormwater disposal system.

Inspection should be carried out by a geotechnical authority during construction to confirm the conditions assumed in this report and in the design.

6.0 LIMITATIONS

The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical design practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

The extent of testing associated with this assessment is limited to discrete test pit locations. It should be noted that subsurface conditions between and away from the test pit locations may be different to those observed during the field work and used as the basis of the recommendations contained in this report.

If subsurface conditions encountered during construction differ from those given in this report, further advice should be sought without delay.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact Shannon Kelly or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd.

the les

Jason Lee Principal Geotechnical Engineer

FIGURE AA1:

Approximate Test Pit Location Plan

APPENDIX A:

Results of Field Investigations

				E	ENGI	NEE	RING LOG - TEST PIT		TE	ST PI	r no):	TP01
C			tes	t 🧖 o	LIENT	: 1	MCCLOY GROUP		PA	GE:			1 OF 1
		LABORATORY	INSWIPTY I	P	ROJE	CT: I	PROPOSED SUBDIVISION		JO	B NO:			NEW15P-0070
		Distriction	().seriji i i						LO	GGED) BY	:	AAC
				L	OCAT	ION: S	STAGE 3 & 4 TERALBA		DA	TE:			22/6/15
EC	QUIPN	IENT TYP	E:	Volvo	ECR2	35CL	20T Excavator	SURFACE RL:	47	'.5 m			
TE	ST P	IT LENGT	H:	2.0 m	W	IDTH:	0.6 m	DATUM:	As	ssume	d		
Drilling and Sampling Material description and profile information											Field	d Test	
0	۲ ۳				<u></u>	L			₩S	×nc≺	Эe		Structure and additional
HHH	ATE	SAMPLES	RL (m)	DEPTH (m)	LOG	MBC/	MATERIAL DESCRIPTION: Soil typ characteristics.colour.minor of	e, plasticity/particle components	ISTU	SISTE	st Ty	lesul	observations
ME	3				9	SLASS			QNO	CON	Te	ш	
					131131		Silty Clayey SAND - fine to mediu	ım grained, brown,					TOPSOIL / COLLUVIUM
						SM	fines of little to low plasticity, with	some tree roots.	м	MD			
						<u>_</u>	0.30m		_				
		0.50m	47.0	-			sandy CLAY - medium plasticity, sand fine to coarse grained.	pale grey brown,					RESIDUAL SUIL
		0.5011	47.0	0.5					_0				
		Б]]					× ×				
		0.90m	16.5	1.0									
			+0.5	1.0									
	_												
	tered						Becoming Silty Sandy CLAV with	rock structure with					
	coun		46.0	15			depth, some ironstone staining.						
ш	ot En		10.0	1.0									
	z					CI				St / VSt			
		2.00m	45.5	2.0					×				
3									×				
		В											
		2.30m											
ige La			45.0	2.5									
82													
2000													
24:21													
	<u> </u>		44.5	3.0		1	3.00m						
2				-	-		Hole Terminated at 3.00 m						
n lê					-								
]								
5			44.0	3.5									
-					-								
					-								
]]	1								
				Notes Sa			ts	Concio	tency			CS (kP	a) Moisture Condition
	iter				50mn	n Diame	ter tube sample	VS	Very Soft		<2	25 5	D Dry M Moiet
- -	- Wat	ter Level	hown	E	Bulk S	onmenta	al sample	F	50π Firm		25 50) - 50) - 100	W Wet
	– Wat	ter Inflow		ASS	(Glas Acid \$	s jar, se Sulfate \$	aled and chilled on site) Soil Sample	St VSt	Stiff Very Stiff		10 20)0 - 200)0 - 400	W _p Plastic Limit W _L Liquid Limit
Str	◀ Wat ata Ch	ier Outflow		в	(Plast Bulk \$	ic bag, Sample	air expelled, chilled)	H Fb	Hard Friable		>4	100	
	G	radational or		Field Tes	ts Phote	ionisati	on detector reading (nom)	Densit	y V	Ve	ery Lo	ose	Density Index <15%
2	tra D	ansitional stra efinitive or di	ata stict	DCP(x-y)	Dyna	mic pen	etrometer test (test depth interval shown)		ME) M	ediun	n Dense	e Density Index 35 - 65%
	st	rata change		пΡ	Hand	renetro	ometer test (UCS KPA)			D) Vi	ense erv De	ense	Density index 65 - 85% Density Index 85 - 100%

Ģ	ENGINEERING LOG - TEST PTI CLIENT: MCCLOY GROUP PROJECT: PROPOSED SUBDIVISION LOCATION: STAGE 3 & 4 TERALBA SUIPMENT TYPE: Volvo ECR235CL 20T Excavator SUBEACE								TE PA JO LO DA	st pi Ge: B no Ggei Te:	T NC :) BY): ':	TP02 1 OF 1 NEW15P-0070 AAC 22/6/15
E Ti	QUIPN EST P	MENT TYP	E: H:	Volvo 2.0 m	ECR2 W	35CL /IDTH	20T Excavator : 0.6 m	SURFACE RL: DATUM:	51 As	l.0 m ssume	ed		
	Dril	lling and Sar	npling				Material description and profile infor	mation			Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type characteristics,colour,minor cc	, plasticity/particle mponents	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	ered					SM	Silty Clayey SAND - fine to medium fines of low plasticity.	n grained, brown,	м	MD			TOPSOIL / COLLUVIUM
ш	Not Encounte		50. <u>5</u>			СН	Sandy CLAY - medium to high pla brown, sand fine to coarse grained	sticity, pale grey I.	M > W	St / VSt	-		RESIDUAL SOIL
					<u> //////</u>		O.70m SANDSTONE - fine to medium gra						HIGHLY WEATHERED
					-		Hole Terminated at 0.70 m Excavator Refusal						
			50. <u>0</u>	<u> </u>	-								
					-								
					-								
			49.5	5 1. <u>5</u>									
					-								
					-								
			49. <u>0</u>	2.0									
					-								
					-								
Lage L			48.5	<u>5</u> 2. <u>5</u>	-								
00.000													
			48.0	<u>)</u> 3.0	-								
2					-								
					-								
200			47.5	<u>5</u> 3.5									
					-								
	EGEND: ater ∠ Wa (Da → Wa ◄ Wa rata Ch	ter Level te and time s ter Inflow ter Outflow anges	hown)	I Notes, Sa U ₅₀ CBR E ASS B Field Tes	mples a 50mn Bulk s Envire (Glass Acid s (Plast Bulk s	nd Tes n Diame sample conment s jar, se Sulfate tic bag, Sample	t ts ter tube sample for CBR testing al sample saled and chilled on site) Soil Sample air expelled, chilled)	Consist VS S F St VSt H Fb Density	Lency Very Soft Soft Firm Stiff Very Stiff Hard Friable	I	U 25 50 10 20 20 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
	G tr D st	adational or ansitional stra efinitive or dia trata change	ata stict	PID DCP(x-y) HP	Photo Dynai Hand	ionisati mic per Penetr	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)		L ME D	Li D N D D	lediun ense erv D	n Dense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

	(ENGINEERING LOG - TEST PIT CLIENT: MCCLOY GROUP PROJECT: PROPOSED SUBDIVISION LOCATION: STAGE 3 & 4 TERALBA										ST PI ⁻ GE: B NO: GGEI TE:	Г NC :) ВҮ): :	TP03 1 OF 1 NEW15P-0070 AAC 22/6/15
-	EQ	UIPN ST DI		E:	Volvo	ECR2	35CL	20T Excavator	SURFAC	E RL:	49).5 m	d		
ŀ		Drill	ing and Sar	nolina	2.0 11			Material description and prof	ile information		7.0	Sume	Fiel	d Test	
-	0	~				<u></u> о	TION				щZ	۲ در	e		Structure and additional
	METHO	WATEF	SAMPLES	RL (m)	DEPTH (m)	GRAPHI LOG	CLASSIFICA SYMBOI	MATERIAL DESCRIPTION: S characteristics,colour,n	oil type, plasticity/pa ninor components	article	MOISTUR	CONSISTER	Test Typ	Result	observations
		untered					SM	Silty Clayey SAND - fine to low plasticity.	medium grained, fi	ines of	М	MD			TOPSOIL
	ш	ot Enco					СН	Sandy CLAY - medium to h 0.35m sand fine to coarse grained	ligh plasticity, pale l	brown,	× ₩	St / VSt			
ŀ		ž		49.0	0.5			0.45m SANDSTONE - fine to med ironstained. Hole Terminated at 0.45 m	ium grained, red	/		н			ROCK
THE CONTRE DOTATION FOR THE TELETING OFFICIAL CONTRELLAR CONTRELLAR CONTRELLAR AND THE TOTATION		END: er Vat (Dat Wat	er Level e and time s er Inflow er Outflow	48.5 48.0 47.5 47.0 46.5 46.0		mples a 50mm Bulks a Enviro (Glass Acid S (Plast	nd Tes h Diame ample pument š jar, se Sulfate : c bag,	ts ter tube sample ter tube sample for CBR testing al sample saled and chilled on site) Soil Sample air expelled, chilled)		Consiste VS VS S S St S VSt V H H	Incy /ery Soft Soft Firm Stiff /ery Stiff		U <2 25 10 20 20	CS (kPa) 5-50 -100 00 -200 00 - 400	1) Moisture Condition D Dry M Moist W Wet W_p Plastic Limit W_L Liquid Limit
	<u></u>	Gi Gi Di	radational or ansitional stra efinitive or dis rata chance	ata stict	Field Tesi PID DCP(x-y) HP	Photo Dynar Hand	ionisati nic pen Penetro	on detector reading (ppm) etrometer test (test depth interval sho ometer test (UCS kPa)	iwn)	<u>Density</u>	V L MD D	Ve Lo D M D	ery Lo bose ediun ense	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

Ģ	()	LABORATORY	(NSW) PTY L		ENGI ELIENT ROJE	NEE : CT: ION: :		TE PA JO LO DA	st Pit Ge: B NO: Ggee Te:	T NC): ::	TP04 1 OF 1 NEW15P-0070 AAC 22/6/15	
E T	QUIPI EST P	VENT TYP IT LENGT	E: H:	Volvo 2.0 m	ECR2	ACE RL: /I:	38 As	8.5 m ssume	ed				
	Dri	lling and Sar	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
						SM	Silty Clayey SAND - fine to medium grained brown, low plasticity.	l, pale	М	MD			TOPSOIL
		0.40m B 0.60m	38. <u>0</u>	 _ 0. <u>5</u> 		СН	Sandy CLAY - medium to high plasticity, pa yellow, sand fine to coarse grained.	le brown,	M > WP	VSt			
	ncountered		37. <u>5</u>	 - 1.0_ 			Sandy CLAY - medium to high plasticity mo grey, sand fine to coarse grained.	 ttled red /					RESIDUAL SÕIL
ш	Not E		37. <u>0</u>	 - 1. <u>5</u> 		СН			M < w _P	VSt / H			
			36. <u>5</u>	 2.0_ 			2.30m Becoming weathered rock with depth.						2.20: Becoming friable with
			36.0	25			brown, highly weathered.	ey pale	D	Fb			HIGHLY WEATHERED ROCK
6 0 0		-	50.0				Hole Terminated at 2.50 m						
			35. <u>5</u>	 3.0_									
			35.0	3. <u>5</u> 									
					mples	Ind Tee	15	Consisto	ncv			CS (kP	a) Moisture Condition
Water U ₅₀ 50mm Diameter tube sample Water Level CBR Bulk sample for CBR testing (Date and time shown) E Environmental sample Water Inflow ASS Acid Sulfate Soil Sample Water Outflow (Plastic bag, air expelled, chilled) Bulk Sample Bulk Sample							ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	VS V S S F F St S VSt V H H Fb F	/ery Soft Soft Firm Stiff /ery Stiff lard Friable		25 25 50 10 20 >2	25 5 - 50) - 100)0 - 200)0 - 400 400	Moistail Control D Dry M Moist W Wet W Plastic Limit W Liquid Limit
	Strata Changes B Bulk Sample Fb Gradational or transitional strata PID Photoionisation detector reading (ppm) Definitive or distict strata change DCP(x-y) Dynamic penetrometer test (test depth interval shown)									Ve Lo D M De	ery Lo bose ediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 15 - 65% Density Index 65 - 85% Density Index 85 - 100%

Ģ	6	LABORATORY			ENGI CLIENT ROJE	NEE : CT: ION:	RING LOG - TEST PIT MCCLOY GROUP PROPOSED SUBDIVISION STAGE 3 & 4 TERALBA	r	T P J L	est Pi Age: Ob No Oggei Ate:	t NC : D BY): ':	TP05 1 OF 1 NEW15P-0070 AAC 22/6/15
E T	QUIPMENT TYPE: Volvo ECR235CL 20T Excavator SURFACE RL: 29.0 m EST PIT LENGTH: 2.0 m WIDTH: 0.6 m DATUM: Assumed Drilling and Sampling Material description and profile information Field To												
	Dril	lling and Sar	npling				Material description and profil	e information			Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: So characteristics,colour,mi	il type, plasticity/particle nor components	MOISTURE	CONSISTENCY	Test Type	Result	Structure and additional observations
						SM	Silty Clayey SAND - fine to r	nedium grained, pale					TOPSOIL
						, SM	0.25m Silty Clayey SAND - fine to r	nedium grained, pale	M	MD			
	ered	0.50m	28.5	 0.5			grey, tines of low plasticity. Sandy CLAY - medium plast grading to grey with depth, s grained.	icity, pale yellow brown and fine to coarse	×	St	_		RESIDUAL SOIL
ш	Not Encounte	B 0.80m	28.0	 - 1. <u>0</u> 		CI			M < w	VSt			
			27.5	1.5_			1.40m SANDSTONE - fine to media highly weathered.	um grained, pale browr		н			HIGHLY WEATHERED
			27.0 26.5 26.0 25.5				Excavator Refusal						
	GEND: ater (Da − Wai	ter Level te and time s ter Inflow ter Outflow	hown)	I <u>Notes, Sa</u> U₅ CBR E ASS	mples a 50mn Bulk s Envire (Glass Acid s (Plast Bulk s	n Diame sample onment s jar, se Sulfate	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	Cons VS S F St VSt H Fb	istency Very S Soft Firm Stiff Very S Hard Friable	oft	<u>U</u> 2: 5: 1: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	CS (kP 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet W Plastic Limit W Liquid Limit
	Strata Changes B Bulk Sample Fb — Gradational or transitional strata PID Photoionisation detector reading (ppm) Dens Definitive or distict strata change DCP(x-y) Dynamic penetrometer test (UCS kPa) Dens							<u>ty</u>	/ V _ L MD N D D	/ery Lo .oose /lediur)ense /erv D	oose n Dense ense	Density Index <15% Density Index 15 - 35% e Density Index 15 - 65% Density Index 65 - 85% Density Index 85 - 100%	

(6	Jual	tes		ENGI CLIENT PROJE	NEE : । ст: ।	RING LOG - TEST PIT MCCLOY GROUP PROPOSED SUBDIVISION		TE PA JO	st pi ⁻ Ge: B NO:):	TP06 1 OF 1 NEW15P-0070
		LABORATORY	(NSW) PTY	LID	OCAT	ION: S	STAGE 3 & 4 TERALBA		LO DA	gged Te:) BY	:	AAC 22/6/15
E	QUIPI EST P	MENT TYP	E: H:	Volvo 2.0 m	ECR2	35CL /IDTH:	20T Excavator 0.6 m	SURFACE RL: DATUM:	40 As).0 m ssume	ed		
	Dri	lling and Sar	mpling				Material description and profile info	rmation			Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type characteristics,colour,minor c	e, plasticity/particle omponents	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
					- } }	SM	Silty Clayey SAND - fine to mediu brown, fines of low plasticity.	m grained, pale	м	MD			TOPSOIL
		0.40m U50 0.80m	39. <u>5</u>	 - 0. <u>5</u> 			Sandy CLAY - low to medium play grey brown mottles with ironstone to coarse grained.	sticity, pale yellow, staining, sand fine	M < Wp	VSt			RESIDUAL SOIL
Ш.	Not Encountered		39.0 38.5 38.0			CL	Sand content increasing with dep	h.	M > Wp	Н			
					-		Hole Terminated at 2.20 m						
			37.5	2.5	-								
			37. <u>0</u>	 - 3.0_ 	-								
			36.5	<u> </u>	-								
	EGEND: <u>Vater</u> (Da (Da Wa Wa Wa trata Ch	ter Level te and time s ter Inflow ter Outflow anges tradational or	hown)	Notes, Sa U₅ CBR E ASS B Field Tes	50mn Bulk s Enviro (Glas Acid s (Plast Bulk s	n Diame sample f onmenta s jar, se Sulfate S tic bag, Sample	ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	Consist VS S F St VSt H Fb Density	tency Very Soft Soft Firm Stiff Very Stiff Hard Friable		<u>U</u> <2 25 50 10 20 >2	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400 pose	Moisture Condition D Dry M Moist W Wet W Plastic Limit WL Liquid Limit
	tr D S	ansitional str efinitive or di trata change	ata stict	PID DCP(x-y) HP	Photo Dynai Hand	ionisati nic pen Penetro	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		L MI D VF	La D M D D	oose ediun ense erv Dr	n Dense	Density Index 15 - 35% e Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

				E	ING	NEE	RING LOG - TEST PIT		TE	ST PI	T NC) :	TP07
6		Jual	tes	† °		:	MCCLOY GROUP		PA	GE:			1 OF 1
		LABORATORY	(NSW) PTY L	.TD P	ROJE	CT:	PROPOSED SUBDIVISION		JO	B NO:			NEW15P-0070
					0047				LO	GGEL) BY	:	AAC
				L	OCAT	ION:	STAGE 3 & 4 TERALBA		DA	TE:			22/6/15
EG TE	UIPN ST PI	MENT TYP	E: H:	Volvo 2.0 m	ECR2 W	35CL	20T ExcavatorSURF.: 0.6 mDATU	ACE RL: M:	31 As	l.0 m ssume	ed		
	Drill	ling and Sar	npling				Material description and profile information				Fiel	d Test	
					0	NOI			u z	ς	0		
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICAT SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle its	MOISTURE	CONSISTEN DENSITY	Test Type	Result	Structure and additional observations
			-			SM	0.10m Silty Clayey SAND - fine to medium graine	d, pale	M	MD			
						SM	0.20m Silty Clayey SAND - fine to medium graine	/ d, pale			-		
		0.40m U50 0.70m	30. <u>5</u>	0. <u>5</u>		CI	Sandy CLAY - medium plasticity, pale brov sand fine to coarse grained.	 vn yellow,	M > w _P				
	countered	1.10m	30. <u>0</u>	 1. <u>0</u>			0.80m Sandy CLAY - medium plasticity, grey brow ironstone staining, sand fine to medium gr	vn with red ained.		-			
ш	Not End	U50 1.40m							<u>م</u>	VSt			
			29.5_	1.5		СІ			M N N				
			29. <u>0</u>	2.0									
									D	н			
			28.5	2.5		1	2.40m Hole Terminated at 2.40 m						
ĺ													
					-								
					-								
			28.0	3.0									
					-								
0					-								
					1								
			27.5	3.5	-								
					-								
1					-								
]								
LEG	GEND:			Notes. Sa	mples a	nd Tes	l	Consiste	ncv			CS (kP	a) Moisture Condition
Wa	ter				50mn Bulk s	n Diame	eter tube sample for CBR testing	VS V	/ery Soft		-2 -2 2F	25 5 - 50	D Dry M Moist
-	Wat	ter Level te and time s	hown)	E	Enviro	onment	al sample	F F	Firm		50) - 100	W Wet
- I	- Wat	er Inflow		ASS	(Glas	s jar, se Sulfate	areo ano chilleo on site) Soil Sample	VSt V	/ery Stiff		10 20)0 - 200)0 - 400	$W_{\rm L}$ Plastic Limit $W_{\rm L}$ Liquid Limit
<u>Stra</u>	¶ Wat ata Cha	er Outflow anges		в	(Plast Bulk S	ic bag, Sample	air expelled, chilled)	H H Fb F	lard riable		>4	100	
	trata Changes B Bulk Sample Gradational or transitional strata Field Tests Definitive or distict strata change PID Photoionisation detector reading (ppm) Definitive or distict strata change DCP(x-y) Dynamic penetrometer test (test depth interval shown)										ery Lo pose lediun ense ery Dr	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

				E	INGI	NEE	RING LOG - TEST PIT			TE	ST PI	r no):	TP08
(CLIENT: MCCLOY GROUP PAGE: PROJECT: PROPOSED SUBDIVISION JOB NO:													1 OF 1
	X	LABORATORY	(NSW) PTY		ROJE	CT: I	PROPOSED SUBDIVISION			JO	B NO:			NEW15P-0070
										LO	GGEE) BY	:	AAC
				L	OCAT	ION: S	STAGE 3 & 4 TERALBA			DA	TE:			22/6/15
E0 Te	QUIPN EST PI	IENT TYP	'E: H:	Volvo 2.0 m	ECR2 W	35CL / IDTH :	20T Excavator 0.6 m	SURFACE R DATUM:	RL:	33 As	.0 m sume	ed		
	Drill	ling and Sar	mpling				Material description and profile infor	mation				Field	d Test	
						NOI					сY			
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICAT SYMBOL	MATERIAL DESCRIPTION: Soil type characteristics,colour,minor co	, plasticity/partic omponents	le	MOISTURE CONDITION	CONSISTEN	Test Type	Result	Structure and additional observations
						SM	Silty Clayey SAND - fine to mediur	n grained, pale						TOPSOIL
							Silty Clayey SAND - fine to mediur	m grained, pale		М	MD			
		0.40m				<u>}</u> −-	0.30m grey. Sandy CLAY - medium plasticity, p	ale brown, sand	+					RESIDUAL SOIL
		0.40111	32.5	0.5			fine to coarse grained.							
		D	-] _										
	red	0.70m	-			CI				× v	VSt			
	untei									Σ				
ш	Enco		32.0	1.0										
	Not		-] _		<u> </u>	<u>1.10m</u>		+					
							SANDSTONE - fine to medium gra extremely to highly weathered.	ained, pale brow	vn,					WEATHERED ROCK
			31.5	 1.5						П	ц			
]:::::					D				
					- · · · · · · · · · · · · · · · · · · ·		1.90m							
	-		31.0	2.0			Hole Terminated at 1.90 m	fusal of excavat	or					
8					-									
					-									
					1									
			30.5	2.5	1									
8					-									
0.00					-									
2					1									
0710			30. <u>0</u>	3.0]									
2					-									
III A					1									
ä V]]	1									
5			29.5	3.5	-									
					-									
					1									
]]	1									
	GENID	<u> </u>	<u> </u>	Notos Sa		and Too	te .	000	eietono	~~			CS (kD	a) Moisture Condition
	ater			U ₅₀	50mm	n Diame	ter tube sample	VS	Ver	ry Soft		<u>-</u>	25 25	D Dry
	Wat	ter Level	hours	E	Bulk s Envirr	ample f	or CBR testing al sample	S F	Sof Firr	π n		25 50	9 - 50) - 100	W Moist W Wet
	(Dat – Wat	ter Inflow	nown)	ASS	(Glass Acid {	s jar, se Sulfate {	aled and chilled on site) Soil Sample	St VSt	Stif Ver	f ry Stiff		10 20	0 - 200 0 - 400	W _p Plastic Limit
	◀ Wat	er Outflow		в	(Plast	ic bag,	air expelled, chilled)		Har	rd able		>4	100	
<u>St</u>	G	anges radational or		Field Test	ts	Janpie		Den	sity	V	Ve	ery Lo	ose	Density Index <15%
	tra D	ansitional stra efinitive or di	ata stict	PID Photoionisation detector reading (ppm) Defisity DCP(x-y) Dynamic penetrometer test (test depth interval shown) Image: Control of the state of the s				L MC	Lc M	oose edium	n Dense	Density Index 15 - 35% Density Index 35 - 65%		
	st	rata change	-	HP	Hand	Penetro	ometer test (UCS kPa)			D VD	De Ve	ense ery De	ense	Density Index 65 - 85% Density Index 85 - 100%

					E	INGI	NEE	RING LOG - TEST PIT		т	EST PI	T NC):	TP09
			alte	20	t 🎾 o	LIENT	: I	MCCLOY GROUP		Р	AGE:			1 OF 1
	C				P	ROJE	CT: I	PROPOSED SUBDIVISION		J	OB NO	:		NEW15P-0070
										L	OGGEI	D BY	:	AAC
					L	OCAT	ION: S	STAGE 3 & 4 TERALBA		D	ATE:			22/6/15
E	QUI	PMEN	TYPE:		Volvo	ECR2	35CL	20T Excavator	SURFACE RL	.: :	35.0 m			
Т	EST	PIT LI	ENGTH:		2.0 m	W	IDTH:	0.6 m	DATUM:	1	Assume	ed		1
		Drilling a	nd Sampl	ling	1		1	Material description and profile inf	ormation			Fiel	d Test	-
L C						⊔ ⊔	L			ᆔᆔ		e		Structure and additional
THO			IPLES	RL (m)	DEPTH	APHI OG	IFICA MBOI	MATERIAL DESCRIPTION: Soil typ	oe, plasticity/particle	STUF		it Typ	esult	observations
MF				()	(,	GR	LASS SY		componento	ЮW W		Tes		
	-	_					0	Silty Clavey SAND - fine to medi	um grained, pale			+		TOPSOIL
				-	-		SM	0.15m brown, pale grey, fines of low pla	asticity.	— м	MD			
				-			SM	0.30m grey, fines of low plasticity.	- — — — — — — — —					
		0.40	m	-				Sandy CLAY - medium to high p sand fine to medium grained.	lasticity, pale brown	ז,				RESIDUAL SOIL
			150	34.5	0.5									
		0.70	m	-	-									
	parad			-										
	othe			-				Deceming note growwith death						
ш		2		34.0	1.0			Becoming pale grey with depth.			VSt			
	No			-	-		СН			×				
				-						≥				
				-				Mottled red grey brown.						
				33.5	1. <u>5</u>									
				-	-									
				-								1		
				-							Н			
				33.0	2.0		1	Hole Terminated at 2.00 m						
				-										
				-		-								
al Lab				-	-	-								
n Latge				32.5	2.5	1								
:00:0£				-]]	1								
2:42 8				-	-	-								
				30.0		-								
10/01				JZ.U	3.0	1								
grile>>				-]]									
Urawing				-	-	-								
v V				31 5	35	-								
00/00				<u></u>]	1								
del M				-	-	-								
I NE				-	-	-								
ENT				-	-	-								
	EGEN	D:	I	1	Notes, Sa	mples a	nd Tes	t <u>s</u> ter tube sample	Consi	istency	oft	<u>U</u>	- CS (kPa 25	a) Moisture Condition
	vater V	Vater Le	vel	(CBR	Bulks	sample	for CBR testing	S -	Soft		25	5 - 50	M Moist
	([Date and	I time show	wn)	F	Enviro (Glas	onmenta s jar, se	al sample aled and chilled on site)	F St	Firm Stiff		50 10) - 100)0 - 200	W Wet W _p Plastic Limit
► CN-CC	— v ⊸ v	vater Inf Vater Οι	ow tflow	1	ASS	Acid S (Plast	Sulfate S tic bag, a	Soil Sample air expelled, chilled)	VSt H	Very S [.] Hard	tiff	20 >4	00 - 400 400) W _L Liquid Limit
_ 5	trata (Changes	i and at		B Field Test	Bulk S	Sample	·	Fb Densi	Friable	/ \/	erv I o	ose	Density Index <15%
- I.GLB		Gradati	onal or onal strata			Photo	oionisatio	on detector reading (ppm)			_ L	00se		Density Index 15 - 35%
		Definiti strata c	/e or distic hange	τ '	HP	Hand	Penetro	ometer test (UCS kPa)		יי [\) C /D V	ense erv D	ense	Density Index 65 - 65% Density Index 85 - 100%

Ç		LABORATORY		E C P		NEE : r ct: r	RING LOG - TEST PIT MCCLOY GROUP PROPOSED SUBDIVISION		TE PA JO LO	st Pit Ge: B NO: GGED) BY	:	TP10 1 OF 1 NEW15P-0070 AAC
F			۴۰	Volvo	ECR2	35CI	20T Excavator		23	TE:			22/6/15
TE	EST PI	IT LENGT	<u>н</u> :	2.0 m	W	IDTH:	0.6 m D	ATUM:	As	sume	d		
	Drill	iing and Sar	npling	T	<u> </u>	z	Material description and profile informa	ation			Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATIOI SYMBOL	MATERIAL DESCRIPTION: Soil type, pl characteristics,colour,minor com	asticity/particle ponents	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
						SM	Silty Clayey SAND - fine to medium g brown.	rained, pale					TOPSOIL
			22.5			 	0.25m Silty Clayey SAND - fine to medium g grey.	 grained, pale	- w	MD			
	countered		22.0	 10		CI	Sandy CLAY - medium plasticity, pak fine to coarse grained.	 e brown, sand		St			RESIDUAL SOIL
Ш	Not En		22.0	 - 1.5			Sandy CLAY - medium plasticity, pak ironstone mottled, sand fine to coarse	e grey, red e grained.	M > W	VSt			
			21.0	 2.0			2.00m Hole Terminated at 2.00 m						
בידב סיטטיטט המושרו במי מות ווי כיגי יכיי			20. <u>5</u>	 - 2.5_ 									
			20. <u>0</u>	 3.0 	•								
			19. <u>5</u>	 									
	GEND: ater ✓ Wat ✓ Dat ✓ Wat ✓ Wat	L :er Level te and time s ter Inflow ter Outflow	hown)	I <u>Notes, Sa</u> U₅₀ CBR E ASS	mples a 50mm Bulk s Envirc (Glass Acid s (Plast Bulk s	nd Tesi n Diame ample f onmenta s jar, se Sulfate s ic bag, Sample	ter tube sample ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	Consiste VS F S St St H F F F F F F F	Arrow Soft Soft Firm Stiff Very Stiff Hard Friable	<u>.</u>	<u>U(</u> <2 25 50 10 20 >4	25 5 5 - 50 0 - 100 0 - 200 0 - 400 00	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit W_L Liquid Limit
	<u>ata Cha</u> Gi Di Di	anges radational or ansitional stra efinitive or dia trata change	ata stict	Field Test PID DCP(x-y) HP	Photo Dynar Hand	ionisationis Penetro	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Ve Lo D M De Ve	ery Lo ose edium ense ery De	iose 1 Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

(2	ual	tes	st ^o c	ENGI CLIENT PROJE	NEE : । ст: ।	RING LOG - TEST PIT MCCLOY GROUP PROPOSED SUBDIVISION		TE: PA JO	st pi [.] Ge: B NO:	T NC):	TP11 1 OF 1 NEW15P-0070
		LABORATORY	(NSW) PTY	LTD	OCAT	ION: S	STAGE 3 & 4 TERALBA		LO DA	ggei Te:) BY	:	AAC 22/6/15
EC TE	QUIPN ST P	MENT TYP	E: H:	Volvo 2.0 m	ECR2	35CL /IDTH:	20T ExcavatorSURF/0.6 mDATUI	ACE RL: M:	31 As	.0 m ssume	ed		
	Dril	ling and Sar	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
						SM	Silty Clayey SAND - fine to coarse grained, brown, low plasticity.	pale	м	MD			TOPSOIL
Э	Not Encountered	0.40m U50 0.80m	30.5ַ	- · ·		СН	Sandy CLAY - medium to high plasticity, gr mottles, sand fine to coarse grained, trace medium grained gravel.	rey brown fine to	M > W _P	St / VSt	-		RESIDUAL SOIL
			30. <u>0</u>	- · · ·			SANDSTONE - fine to medium grained, rec weathered.	 d, highly	D	н			HIGHLY WEATHERED ROCK
			29.5 29.0 28.5 28.0 27.5				Hole Terminated at 1.10 m Excavator Refusal						
	GEND: ter Wa (Da Wa	ter Level te and time s ter Inflow ter Outflow	hown)	Notes, Sa U₅ CBR E ASS	amples a 50mn Bulk s Enviro (Glass Acid s (Plast	n Diame sample i conmenta s jar, se Sulfate s tic bag,	ts eter tube sample for CBR testing al sample saled and chilled on site) Soil Sample air expelled, chilled)	Consister VS F St VSt H	ency Very Soft Soft Firm Stiff Very Stiff Hard		U 25 50 10 20	<u>CS (kPa</u> 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet W Plastic Limit W Liquid Limit
<u>Str</u>	a <u>ta Ch</u> G tr D si	anges Fradational or ansitional stra refinitive or dis trata change	ata stict	PID DCP(x-y) HP	Buik S ts Photo Dynai Hand	ionisati nic pen Penetro	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME D Vn	V La D M D	ery Lo bose lediun ense ery Da	oose n Dense	I Density Index <15%

			e.		E E	INGI	NEE	RING LOG - TEST PIT			TE	ST PI):	TP12
	C		Indi	too	t 🧖 c	LIENT	: 1	MCCLOY GROUP			PA	GE:			1 OF 1
	2	X	LABORATORY		P	ROJE	CT: I	PROPOSED SUBDIVISION			JO	B NO:			NEW15P-0070
			LABORATORY	(19044)1-111							LO	GGED) BY	:	AAC
					L	OCAT	ION: S	STAGE 3 & 4 TERALBA			DA	TE:			22/6/15
	EQ	UIPN	IENT TYP	E:	Volvo	ECR2	35CL	20T Excavator	SURFACE	E RL:	29	.5 m			
	TE	ST PI	T LENGT	H:	2.0 m	W	IDTH:	0.6 m	DATUM:		As	sume	d		
		Drill	ing and Sar	npling			1	Material description and profile in	nformation				Field	d Test	
	~					0	NOL				шZ	, Ľ	e		
	I E E	TER	SAMPLES	RL	DEPTH	BHIO	FICA ⁻	MATERIAL DESCRIPTION: Soil ty	/pe, plasticity/pa	article	STUR DITIO	STEN	Typ	sult	observations
	ΜE	W۹		(m)	(m)	GR	ASSI SY1	characteristics,colour,minor	r components		MOIS	DEI	Test	R	
							ъ С					0			
						$ \{ \} $	SM	brown, fines of low plasticity.	dium grained, pa	ale					
							<u> </u>	Silty Clayey SAND - fine to med	dium grained, pa	 ale	М	MD			
]]		SM	grey, fines of low plasticity.							
			0.50m	29.0	0.5			Sandy CLAY - medium to high medium grained.	plasticity, sand	fine to					RESIDUAL SOIL
			D												
			0.80m												
		red	0.00111					Some ironstone inclusions.							
		ounte		28.5	1.0										
	ш	Enco					СН				× ×	VSt			
		Not									2				
				28.0	1.5										
															1.50: Becoming stiffer with depth and developing rock
															structure.
							1	SANDSTONE / SILTSTONE - f	ine to medium						HIGHLY WEATHERED
				27.5	2.0			grained, pale grey brown, highly	y weathered.		П	ц			ROCK
3											D				
								2.20m Hole Terminated at 2 20 m							
						-									
				27.0	2.5										
2						-									
0.00.0						-									
74.7						1									
1071				26.5	3.0	1									
						-									
b B						-									
						-									
5				26.0	3.5	1									
]]										
101 AA						-									
						-									
						1									
	LEG	END:	-		Notes, Sa	mples a	nd Tes	ts ter tube sample	<u> </u>	Consisten	erv Soft		<u>U(</u>	CS (kPa 25	a) Moisture Condition
		धा Wat	er Level		CBR	Bulk s	ample	for CBR testing		S SC	oft		25	5 - 50	M Moist
	_	(Dat	te and time s	hown)	F	Enviro (Glas	onmenta s jar, se	a sample aled and chilled on site)		F Fi	m iff		50 10) - 100)0 - 200	W Wet W _p Plastic Limit
		Wat Wat	er Inflow er Outflow		ASS	Acid S (Plast	Sulfate S ic bag,	Soil Sample air expelled, chilled)	\	/St Ve H Ha	ery Stiff ard		20 >4	00 - 400 100	W _L Liquid Limit
2	<u>Stra</u>	ta Cha	anges		B Field Too	Bulk S	Sample	· · ·	-	Fb Fr	iable v	1/4	erv I o	IOSE	Density Index <15%
2		Gi tra	radational or ansitional stra	ata	PID	Photo	ionisati	on detector reading (ppm)		<u>- onony</u>	L	LC	oose		Density Index 15 - 35%
		— De sti	efinitive or di rata change	stict	HP	Hand	Penetro	ometer test (UCS kPa)			IVIL D VD		eulurr ense		Density Index 55 - 05% Density Index 65 - 85% Density Index 85 - 100%

				E	INGI	NEE	RING LOG - TEST PIT		TE	ST PI	t nc):	TP13
			too	et 💋 o	LIENT	: 1	MCCLOY GROUP		PA	GE:			1 OF 1
	0	LABORATORY	I UUU	P	ROJE	CT:	PROPOSED SUBDIVISION		JO	BNO	:		NEW15P-0070
		Diboronom	0.000	210					LO	GGE) BY	:	AAC
				L	OCAT	ION:	STAGE 3 & 4 TERALBA		DA	TE:			22/6/15
E	QUIP		E:	Volvo	ECR2	35CL	20T Excavator	SURFACE RL	.: 20	6.5 m			
	ESTF	IT LENGT	H:	2.0 m	w	IDTH:	0.6 m	DATUM:	As	ssume	ed		
_	Dr	lling and Sar	mpling T			7	Material description and profile info	ormation			Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATIO SYMBOL	MATERIAL DESCRIPTION: Soil typ characteristics,colour,minor c	e, plasticity/particle components	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
						SM	Silty Clayey SAND - fine to mediu 0.15m brown, fines of low plasticity. Silty Clayey SAND - fine to mediu	Im grained, pale		MD			
		0.40m	_			- SM	0.30m grey, fines of low plasticity. Sandy CLAY - medium plasticity, fine to medium grained.	pale brown, sand		St			RESIDUAL SOIL
		U50	26.0	0.5									
	ered	0.70m	-										
ш	Encounte	1 10m	25.5	1.0		CI	Grading to pale grey with depth.		М				
	Not E	1.1011								VSt			
		1.40m											
			25. <u>0</u>	1.5			increasing sand with depth.						
							<u>1.80m </u>		_				
			24.5	2.0			SANDSTONE - fine to medium g extremely to highly weathered.	rained, pale grey,	D	н			WEATHERED ROCK
							Hole Terminated at 2.10 m						
			24.0	2.5									
2000													
0.0 41.4													
202			23.5	3.0									
			23.0	3.5									
				-									
	EGEND	:	·	Notes, Sa	Imples a 50mm	nd Tes Diame	t <u>s</u> ter tube sample	Consi VS	stency Verv Sof	t.		CS (kPa 25	a) Moisture Condition D Drv
	water Wa	ater Level		CBR	Bulks	ample	for CBR testing	S E	Soft	-	25	5 - 50	M Moist
	(Da	ate and time s	shown)	E	(Glas	s jar, se	a sample aled and chilled on site)	St	Stiff		50 10)0 - 200	W _p Plastic Limit
	-√a Wa	ater Outflow		A55	Acid S (Plast	ic bag,	son sample air expelled, chilled)	VSt H	very Stif Hard	ſ	20 >4	iu - 400 100	v VV _L Liquid Limit
S	trata Cl	hanges Fradational or		B <u>Field Te</u> s	Bulk S <u>ts</u>	Sample		Fb Densi	Friable ty V	V	ery Lo	ose	Density Index <15%
	t	ransitional str	ata	PID DCP(x-v)	Photo	ionisati nic per	on detector reading (ppm) etrometer test (test depth interval shown)		L	Lo D M	oose lediun	1 Dense	Density Index 15 - 35%
	[petinitive or di strata change	stict	HP	Hand	Penetro	ometer test (UCS kPa)		D		ense erv De	ense	Density Index 65 - 85%

(Q	LABORATORY			ENGI LIENT ROJE	NEE ∵ № CT: F	RING LOG - TEST PIT MCCLOY GROUP PROPOSED SUBDIVISION			te: Pa Jo Lo	st pi .ge: B no: .ggei	T NC : : :): ':	TP14 1 OF 1 NEW15P-0070 AAC
					L	OCAT	ION: S	STAGE 3 & 4 TERALBA			DA	TE:			22/6/15
E T	:QUI :ES1	ipm T pi	IENT TYP T LENGTI	E: H:	Volvo 2.0 m	ECR2	35CL / IDTH:	20T Excavator 0.6 m	SURFACE DATUM:	RL:	22 As	2.0 m ssume	ed		
		Drilli	ing and Sar	npling				Material description and profile	e information		1		Fiel	d Test	
METHOD		WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soi characteristics,colour,min	l type, plasticity/part nor components	icle	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
							SM	Silty Clayey SAND - fine to m brown.	nedium grained, pale	e	м	MD			TOPSOIL / COLLUVIUM
			0.40m					Sandy CLAY - medium plast fine to medium grained.	icity, pale brown, sa	 nd		St			RESIDUAL SOIL
		ountered	B 0.60m	21.5	5 0.5 0 1.0						M > W _P				
ш	1	Not Enco		20.5	 5 1.5		СІ	Becoming mottled red grey v lenses.	vith depth with irons	tone	M < Wp	VSt			
				20. <u>0</u>	 0 2.0			2.10m Hole Terminated at 2.10 m							
						-									
arger cap				19.5	5 2. <u>5</u>										
200.000															
12.42 0.						-									
				19. <u>0</u>) 3. <u>0</u>										
III III															
10.00.00-				18.5	<u>5</u> 3.5	-									
- 1001															
		ND: Wate (Date Wate Wate	er Level e and time s er Inflow er Outflow	hown)	Notes, Sa U ₅₀ CBR E ASS	50mn 50mn Bulk s Envir (Glas Acid s (Plast Bulk s	n Diame sample f onmenta s jar, se Sulfate S tic bag, a	<u>s</u> ter tube sample or CBR testing I sample aled and chilled on site) toil Sample air expelled, chilled)	Co V S F S VS H c	e nsister S V S S Fi t S t S t V I H	ncy ery Soft oft irm tiff ery Stiff ard riable		U 25 50 10 20 >4	<u>CS (kPa</u> 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wpp Plastic Limit WL Liquid Limit
	<u></u>	Gr tra De str	radational or ansitional stra efinitive or dis rata change	ata stict	Field Test PID DCP(x-y) HP	Photo Dyna Hand	pionisatio mic pene Penetro	n detector reading (ppm) strometer test (test depth interval show meter test (UCS kPa)	n)	nsity	V L ME D VD	V La D M D	ery Lo bose lediun ense ery D	oose n Dense ense	Density Index <15% Density Index 15 - 35% e Density Index 15 - 65% Density Index 65 - 85% Density Index 85 - 100%

				E	ENGI	NEE	RING LOG - TEST PIT		TE	ST PI	t nc):	TP15
C		ENGINEERING LOG - TEST PIT TEST PIT NO: TP15 CLIENT: MCCLOY GROUP PAGE: 1 OF 1 PROJECT: PROPOSED SUBDIVISION JOB NO: NEW 15P-0070											
	CLIENT: MCCLOY GROUP PAGE: 1 OF 1 PROJECT: PROPOSED SUBDIVISION JOB NO: NEW15P-0070												
		EABORATORY	(NOW) FILL						LO	GGEE) BY	:	AAC
				L	OCAT	ION:	STAGE 3 & 4 TERALBA		DA	TE:			22/6/15
EC	UIPN	IENT TYP	E:	Volvo	ECR2	35CL	20T Excavator	SURFACE RL:	23	3.5 m			
TE	ST P	IT LENGT	H:	2.0 m	w	IDTH	0.6 m	DATUM:	As	ssume	ed		
	Drill	ling and Sar	npling			1	Material description and profile info	ormation			Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil typ characteristics,colour,minor o	e, plasticity/particle components	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
						SM	Silty Clayey SAND - fine to mediu 0.15m brown, fines of low plasticity.	um grained, pale	- M	MD			
					11	SM	Silty Clayey SAND - fine to media 0.30m grey, fines of low plasticity.	um grained, pale					COLLUVIUM
		0.40m	23.0				Sandy CLAY - medium plasticity, fine to medium grained.	pale brown, sand		St			RESIDUAL SOIL
	ered	U50	20.0								1		
ш	Encounte	0.70m				СІ			W _P	VSt			
	Not		22.5						×				
		1.05m	22.5	1.0									
		050 1.15m				·	1.20m		-				
						sc	Clayey SAND - fine to coarse gra brown, fines of low plasticity.	lined, pale grey		н			
			22. <u>0</u>	1. <u>5</u>		<u>1</u>	SANDSTONE - fine to medium g grey, highly weathered.	rained, pale brown	D	-			HIGHLY WEATHERED
							Hole Terminated at 1.60 m						
			21 5		-								
5			21.5	2.0	-								
					-								
			21.0	25	-								
					-								
1					-								
			20.5	3.0	1								
]]									
p					-								
					-								
5			20.0	3.5									
					-								
					-								
					1								
				Not 2							<u> </u>		
	JEND: ter			U ₅₀	50mn	n Diame	ter tube sample	VS V	/ery Soft	t	<u>U</u> <2	25 25	D Dry
\mathbf{I}	Wat	ter Level	hours	CBR E	Bulk s Enviro	ample onment	tor CBR testing al sample	S 3 F 1	Sott Firm		25 50	o - 50) - 100	M Moist W Wet
►	(Dat – Wat	te and time s ter Inflow	nown)	ASS	(Glas Acid S	s jar, se Sulfate :	aled and chilled on site) Soil Sample	St St St	Stiff /ery Stiff		10 20)0 - 200)0 - 400) W _p Plastic Limit) W _L Liquid Limit
	Wat	ter Outflow		в	(Plast Bulk 9	ic bag, Sample	air expelled, chilled)		-lard Friable		>4	100	
ັງ <u>ວນໃ</u>	<u>G</u> G	radational or		Field Tes	<u>ts</u> Dhot-	ionic of	on detector reading (nom)	Density	V	V	ery Lo	ose	Density Index <15%
	tra — D st	ansitional stra efinitive or di rata change	ata stict	DCP(x-y) HP	Dynai Hand	mic per Penetro	etrometer test (test depth interval shown) ometer test (UCS kPa)		L ME D VE	D M D D V	iose lediun ense erv De	n Dense	e Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Q	6	LABORATORY			ENGI CLIENT PROJE	NEE :: ct:	RING LOG - TEST PIT MCCLOY GROUP PROPOSED SUBDIVISION		TE PA JO	st pi .ge: .b no	т NC :):	TP16 1 OF 1 NEW15P-0070
				L	OCAT	ION:	STAGE 3 & 4 TERALBA		LO DA	GGEI TE:) BY	:	AAC 22/6/15
E(Ti	QUIPN EST P	MENT TYP IT LENGT	E: H:	Volvo 2.0 m	ECR2	35CL /IDTH	20T Excavator 0.6 m	SURFACE RL: DATUM:	39 As	9.0 m ssume	ed		
	Dril	lling and Sar	mpling				Material description and profile info	rmation			Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type characteristics,colour,minor co	, plasticity/particle omponents	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	red				1313	SM	0.10m Silty Clayey SAND - low plasticity,	pale brown.	М	MD			
ш	Not Encounte		38.5			CI	Sandy CLAY - medium plasticity, sand fine to coarse grained, with s medium grained gravel.	pale grey brown, some fine to	M < Wp	VSt			
				-			SANDSTONE - fine to medium gr weathered.	ained, red, highly		н			ROCK
					-		Hole Terminated at 0.60 m Excavator Refusal						
			38. <u>0</u>	1.0	-								
					-								
]									
			37.5	1.5									
				-									
			37. <u>0</u>	2.0	-								
200					-								
2					-								
			36.5	2.5	-								
1					-								
			36.0	3.0									
			-										
2													
			35.5	3.5									
	GEND: ater Wa (Da — Wa ■ Wa rata Ch	ter Level te and time s ter Inflow ter Outflow anges	hown)	<u>Notes, Sa</u> U₅ CBR E ASS B	amples a 50mn Bulk s Envir (Glas Acid s (Plas Bulk s	n Diame sample onment s jar, se Sulfate tic bag, Sample	its eter tube sample for CBR testing al sample saled and chilled on site) Soil Sample air expelled, chilled)	Consist VS S F St VSt H Fb	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable	t 7	U 25 50 10 20 >4	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	a) <u>Moisture Condition</u> D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tr D st	Gradational or ansitional stra Definitive or di trata change	ata stict	Field Tes PID DCP(x-y) HP	<u>ts</u> Photo Dyna Hand	oionisati mic per Penetr	on detector reading (ppm) netrometer test (test depth interval shown) ometer test (UCS kPa)	<u>Density</u>	V L MI D VF		ery Lo oose lediun ense ery D	n Dense ense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

				E	INGI	NEE	RING LOG - TEST PIT		TE	ST PI	r no):	TP17
C			tes	t 💆 c	LIENT	: 1	MCCLOY GROUP		PA	GE:			1 OF 1
	X	LABORATORY	INSWIPTY I	P	ROJE	CT:	PROPOSED SUBDIVISION		JO	B NO:			NEW15P-0070
									LO	GGEE) BY	:	AAC
				L	OCAT	ION:	STAGE 3 & 4 TERALBA		DA	TE:			22/6/15
EQ	UIPN		'E: ⊔.	Volvo	ECR2	35CL	20T Excavator		.: 29).0 m	d		
		ling and Sar	n.	2.0 111			Matarial description and profile inf	DATONI.	A	sume	Eigh	d Toot	
			Inpilling			z		ormation					
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATIO SYMBOL	MATERIAL DESCRIPTION: Soil typ characteristics,colour,minor	oe, plasticity/particle components	MOISTURE	CONSISTENC) DENSITY	Test Type	Result	Structure and additional observations
						SM	Silty Clayey SAND - fine to medi brown, pale grey.	um grained, pale					TOPSOIL
						+	0.20m Silty Clayey SAND - fine to medi	um grained, pale	—- м	MD			
		0.40m		1 -	11	SM	grey.		_				
			28.5	0.5			Sandy CLAY - medium plasticity fine to medium grained.	, pale brown, sand					RESIDUAL SOIL
		D											
		0.80m				CI				н			
	red	0.00111											
	ounte		28.0	1.0		<u> </u>	1.00m						
ш	Enco						Silty Sandy CLAY - low to mediu sand fine to medium grained. (C	m plasticity, black, arbonaceous					ROCK
	Not						Siltstone).		Š				
									×				
			27. <u>5</u>	1.5		CL				VSt/			
			27. <u>0</u>	2.0_		<u> </u>	2.00m						
							brown, highly weathered.	grained, pale grey		н			ROCK
	+						Hole Terminated at 2.20 m						
]]]								
5			26. <u>5</u>	2.5	-								
					-								
					-								
į													
			26.0	3.0	-								
					-								
p]								
				-	4								
			25.5	3.5	-								
					-								
I				-									
					4								
LEC	GEND:	<u> </u>		Notes. Sa	mples a	nd Tes	<u> </u>	Cons	stency		U		a) Moisture Condition
Wat	ter				50mn	n Diame	 eter tube sample for CBR testing	VS	Very Sof	İ	<2 <2	25 5 - 50	D Dry M Moist
\blacksquare	Wat	er Level te and time s	hown)	E	Enviro	onment	al sample	F	Firm		50) - 100	W Wet
►	- Wat	ter Inflow		ASS	(Glas Acid S	s jar, se Sulfate \$	aieu ana chillea on site) Soil Sample	St VSt	Stiff Very Stiff	:	10 20)0 - 200)0 - 400	VV _p Plastic Limit W _L Liquid Limit
Stra	I Wat ata Ch	er Outflow		в	(Plast Bulk S	ic bag, Sample	air expelled, chilled)	H Fb	Hard Friable		>4	400	
	G	radational or	eta	Field Test PID	<u>ts</u> Photo	ionisati	on detector reading (ppm)	Densi	ty V	Ve	ery Lo	ose	Density Index <15% Density Index 15 - 35%
	tra D	efinitive or di	ata stict	DCP(x-y)	Dynai	nic pen	etrometer test (LICS kPa)		M) M	edium	n Dense	e Density Index 35 - 65%
	st	rata change			ianu				VE) Vi	erv De	ense	Density Index 85 - 100%

					E	INGI	NEE	RING LOG - TEST PIT			TE	ST PIT	r no):	TP18
			Indi	tas	t 🎾 o	LIENT	: 1	MCCLOY GROUP			PA	GE:			1 OF 1
		X	LABORATORY	INSWIPTY!	P	ROJE	CT:	PROPOSED SUBDIVISION			JO	B NO:			NEW15P-0070
			2 201101	(1011)							LO	GGED) BY	:	AAC
					L	OCATI	ON:	STAGE 3 & 4 TERALBA			DA	TE:			22/6/15
	EQ	UIPN	IENT TYP	E:	Volvo	ECR2	35CL	20T Excavator	SURFACE F	RL:	20	.0 m			
	TES	ST PI	T LENGT	H:	2.0 m	w	IDTH:	0.6 m	DATUM:		As	sume	d		1
		Drill	ing and Sar	npling	1		1	Material description and profile info	rmation				Field	d Test	
	Q	~				<u></u>	L				₩S	, Y NC	ЭС		Structure and additional
	ТНО	ATEF	SAMPLES	RL (m)	DEPTH	APH OG	IFICA MBO	MATERIAL DESCRIPTION: Soil type	e, plasticity/partio	cle	STUF	ISTE	t Typ	esult	observations
	ME	Ň		(,	(,	GR GR	LASS				QN CO		Tes	œ	
-							O SM	Silty Clavey SAND - fine to coarse	e grained pale						TOPSOIL
				-	-	3 3 -2-1-2-1		0.13m brown, fines of low plasticity, som	e organics.		М	MD			
				-			, SIVI	<u>0.25m</u> <u>grey</u> , fines of low plasticity.	– — — — — — —	/					RESIDUAL SOIL
			0.40m					Sandy CLAY - medium plasticity, sand fine to medium grained, with	pale grey brown some fine to	١,					
			P	19. <u>5</u>	0.5			medium grained gravel.							
			U50	-											
			0.7011	-			CI				× ≥	VSt			
		ered		-							Σ				
		ounti		19. <u>0</u>	1.0										
	ш	t Enc		-				Becoming pale grey brown with de	epth.						
		No		-				1.30m							
				-		0/0/0		Clayey Sandy GRAVEL - fine to c	oarse grained, p	pale					EXTREMELY WEATHERED CONGLOMERATE
				18.5	1.5	/		Slowin yollow.							
				-		0/ 0/ 0 0/ 9/									
				-	-	°/ 9/ 0	GC				D	н			
				-		e e									
				18.0	2.0	66									
00				-		6 6	,								
					-			2.20m Hole Terminated at 2.20 m							
an anu				-		1									
algel L				17.5	2.5	-									
200				-		-									
00.00 2				-		-									
4.7				-	-	1									
107/10				17. <u>0</u>	3.0]									
				-	-	-									
/IIIGFIIE				-	-	-									
				-	1 -	1									
				16.5	3.5]									
n/nn				-		-									
				-		+									
Z				-	- 1	1									
					1	1			i						
	LEG <u>W</u> at	END: er			<u>Notes, Sa</u> U₅₀	mples a 50mm	nd Tes Diame	<u>ts</u> ter tube sample	Cor VS	n <u>sisten</u> S Ve	cy ery Soft		<u>U(</u> <2	CS (kPa 25	a) <u>Moisture Condition</u> D Dry
	Ţ	Wat	er Level	0	CBR E	Bulk s Enviro	ample onment	for CBR testing al sample	S F	So Fir	oft m		25 50	5 - 50) - 100	M Moist W Wet
UREL V	-	(Dat Wat	te and time s er Inflow	hown)	466	(Glass	s jar, se	aled and chilled on site)	St	Sti	iff arv Stiff		10	0 - 200	W _p Plastic Limit
		Wat	er Outflow		-00	(Plast	ic bag,	air expelled, chilled)	H	Ha	ard		20 >4	,0 - 400 100	
Cog	<u>Stra</u>	ta Cha	anges radational or		B Field Test	Bulk S t <u>s</u>	sample		Fb Der	Fri nsity	able V	Ve	ery Lo	ose	Density Index <15%
		tra	ansitional stra	ata	PID DCP(x-v)	Photo Dynar	ionisati nic pen	on detector reading (ppm) etrometer test (test depth interval shown)			L ME	Lo M	oose edium	n Dense	Density Index 15 - 35% Density Index 35 - 65%
		sti	rata change	Guot	HP	Hand	Penetro	ometer test (UCS kPa)			D VD	De	ense erv De	ense	Density Index 65 - 85% Density Index 85 - 100%

APPENDIX B:

Results of Laboratory Testing

Californ	nia Bearing Ratio Te	est Report	Report No: CBR:NEW15V	/-1297S01 Issue No: 1
Client: Principal: Project No.: Project Name:	McCLOY GROUP Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 NEW15P-0070 Proposed Subdivision - Stage 3 & 4, Te	eralba	Accredited for compliance with IS The results of the tests, calibration measurements included in this do to Australian/national standards Approved Signatory: Dane Cullen (Senior Geotechnician) NATA Accredited Laboratory Nun Date of Issue: 1/07/2015	O/IEC 17025 ns and/or curnent are traceabl nber18686
Sample Det Sample ID: Client ID: Date Sampled: Sampling Meth Specification: Location: Date Tested:	ails NEW15W-1297S01 22/06/2015 od: AS1289.1.2.1 cl 6.5.4 No Specification TP4 - (0.4 - 0.6m) 30/06/2015	Source: Material:	On-Site Sandy Clay	
Load vs Pe	netration		Test Results	4.0 1.55 23.5 1.54 100 23.5 100 1.50 97 2.5 34.1 27.6 Standard 9.00 4 0.0 23.1

Form No: 18986, Report No: CBR:NEW15W-1297--S01

Moisture Content Method Performed as Per AS1289.2.1.1.

Report No: CBR:NEW15W-1297--S02

- 02 4968 4468 т٠
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Issue No: 1 California Bearing Ratio Test Report Accredited for compliance with ISO/IEC 17025 Client: McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards NATA Principal: NEW15P-0070 Project No .: Approved Signatory: Dane Cullen Project Name: Proposed Subdivision - Stage 3 & 4, Teralba (Senior Geotechnician) WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 1/07/2015 Sample Details Sample ID: NEW15W-1297--S02 Client ID: Date Sampled: 22/06/2015 Sampling Method: AS1289.1.2.1 cl 6.5.4 Specification: **On-Site** No Specification Source: Location: TP5 - (0.5 - 0.8m) Material: Sandy Clay 30/06/2015 Date Tested: **Test Results** Load vs Penetration AS 1289.6.1.1 CBR At 2.5mm (%): 4.0 1.5 Maximum Dry Density (t/m3): 1.64 1.4 Optimum Moisture Content (%): 21.7 Dry Density before Soaking (t/m³): 1.64 13 Density Ratio before Soaking (%): 100 12 Moisture Content before Soaking (%): 21.6 Moisture Ratio before Soaking (%): 99 1 1 Dry Density after Soaking (t/m³): 1.62 1.0 Density Ratio after Soaking (%): 99 Load on Piston (kN) Swell (%): 1.0 0 9 28.7 Moisture Content of Top 30mm (%): 0.8 Moisture Content of Remaining Depth (%): 22.9 Compactive Effort: Standard 0.7 Surcharge Mass (kg): 9.00 0.6 Period of Soaking (Days): 4 Oversize Material (%): 0.0 0.5 0.4 - Moisture Content -Field Moisture Content (%): 20.3 03 0.2 0.1 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 Penetration (mm)

Comments

Califorr	nia Bearing Ratio T	est Report	Report No: CBR:NEW15W	/-1297S0 Issue No:
Client: Principal: Project No.: Project Name:	McCLOY GROUP Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 NEW15P-0070 Proposed Subdivision - Stage 3 & 4, T	eralba	Accredited for compliance with IS The results of the tests, calibration measurements included in this do to Australian/national standards Accredited For compliance with IS The results of the tests, calibration measurements included in this do to Australian/national standards Approved Signatory: Dane Cullen (Senior Geotechnician) NATA Accredited Laboratory Num Date of Issue: 1/07/2015	O/IEC 17025 Is and/or cument are tracea
Sample De Sample ID: Client ID: Date Sampled: Sampling Meth Specification: Location: Date Tested:	22/06/2015 22/06/2015 aod: AS1289.1.2.1 cl 6.5.4 No Specification TP12 - (0.5 - 0.8m) 30/06/2015	Source: Material:	On-Site Sandy Clay	
Load vs Pe	netration		Test Results	3.5 1.53 26.4 1.53 100 26.3 100 1.51 99 1.0 35.3 27.8 Standard 9.00 4 0.0

Comments

- 02 4968 4468 т٠
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Comments

- 02 4968 4468 т٠
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: CBR:NEW15W-1297--S12 California Bearing Ratio Test Report Issue No: 1 Accredited for compliance with ISO/IEC 17025 Client: McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards ΝΑΤΑ Principal: NEW15P-0070 Project No .: Approved Signatory: Dane Cullen Project Name: Proposed Subdivision - Stage 3 & 4, Teralba (Senior Geotechnician) WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 1/07/2015 Sample Details Sample ID: NEW15W-1297--S12 Client ID: Date Sampled: 22/06/2015 Sampling Method: AS1289.1.2.1 cl 6.5.4 Specification: **On-Site** No Specification Source: Location: TP17 - (0.4 - 0.8m) Material: Sandy Clay 30/06/2015 Date Tested: **Test Results** Load vs Penetration AS 1289.6.1.1. 40+... CBR At 5.0mm (%): 7 Maximum Dry Density (t/m3): 1.82 Optimum Moisture Content (%): 14.6 Dry Density before Soaking (t/m³): 1.81 Density Ratio before Soaking (%): 100 Moisture Content before Soaking (%): 14.7 3.0 Moisture Ratio before Soaking (%): 100 Dry Density after Soaking (t/m³): 1.81 Density Ratio after Soaking (%): 100 oad on Piston (kN) Swell (%): 0.0 19.8 Moisture Content of Top 30mm (%): 20 Moisture Content of Remaining Depth (%): 16.1 Compactive Effort: Standard Surcharge Mass (kg): 9.00 Period of Soaking (Days): 4 Oversize Material (%): 0.0 1.0 - Moisture Content -Field Moisture Content (%): 15.1 0.0 7.0 1.0 2.0 3.0 4.0 5.0 6.0 8.0 9.0 10.0 11.0 12.0 13.0 0.0 Penetration (mm)

Comments

- 02 4968 4468 т٠
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Comments

Report No: SSI:NEW15W-1297--S05

- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Issue No: 1 Shrink Swell Index Report Accredited for compliance with ISO/IEC 17025 Client: McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards ΝΑΤΑ Principal: Project No.: NEW15P-0070 Approved Signatory: Alan Cullen (Principal Geotechnician) Project Name: Proposed Subdivision - Stage 3 & 4, Teralba WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 3/07/2015 Sample Details Sample ID: NEW15W-1297--S05 Client Sample ID: Test Request No .: Sampling Method: AS1289.1.2.1 cl 6.5.4 Material: Sandy Clay Date Sampled: 22/06/2015 Source: On-Site Date Submitted: 24/06/2015 Specification: No Specification Project Location: Pitt Street, Teralba TP9 - (0.4 - 0.7m) Sample Location: Borehole Number: TP9 Borehole Depth (m): 0.4 - 0.7m AS 1289.7.1.1 AS 1289.7.1.1 Shrink Test Swell Test Swell on Saturation (%): 0.5 Shrink on drying (%): 7.1 29.5 Shrinkage Moisture Content (%): 30.2 Moisture Content before (%): Est. inert material (%): Moisture Content after (%): 31.6 0 Est. Unc. Comp. Strength before (kPa): 250 Crumbling during shrinkage: 0 Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Nill 150 Shrink Swell Shrinkage Sw ell 10.0 Shrink (%) Esh - Swell (%) Esw 5.0 0.0 -5.0 -10.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 5.0 45.0 50.0 Moisture Content (%) Shrink Swell Index - Iss (%): 4.1

Report No: SSI:NEW15W-1297--S06

- 02 4968 4468
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Issue No: 2 Shrink Swell Index Report his report replaces all previous issues of report no 'SSI:NEW15W-1297--S06' Accredited for compliance with ISO/IEC 17025 Client: McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards ΝΑΤΑ Principal: Project No.: NEW15P-0070 Approved Signatory: Alan Cullen (Principal Geotechnician) Project Name: Proposed Subdivision - Stage 3 & 4, Teralba WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 3/07/2015 Sample Details Sample ID: NEW15W-1297--S06 Client Sample ID: Test Request No .: Sampling Method: AS1289.1.2.1 cl 6.5.4 Material: Sandy Clay Date Sampled: 22/06/2015 Source: On-Site Date Submitted: 24/06/2015 Specification: No Specification Project Location: Pitt Street, Teralba TP11 - (0.5 - 0.8m) Sample Location: Borehole Number: **TP11** Borehole Depth (m): 0.5 - 0.8m AS 1289.7.1.1 AS 1289.7.1.1 Shrink Test Swell Test Swell on Saturation (%): -0.4 Shrink on drying (%): 2.9 22.2 Shrinkage Moisture Content (%): 21.9 Moisture Content before (%): Moisture Content after (%): 22.5 Est. inert material (%): 1 0 Est. Unc. Comp. Strength before (kPa): 450 Crumbling during shrinkage: Est. Unc. Comp. Strength after (kPa): 400 Cracking during shrinkage: Minor Shrink Swell Shrinkage Sw ell 10.0 Shrink (%) Esh - Swell (%) Esw 5.0 0.0 -5.0 -10.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 5.0 45.0 50.0 Moisture Content (%) Shrink Swell Index - Iss (%): 1.6

- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: SSI:NEW15W-1297--S08 Issue No: 1 Shrink Swell Index Report Accredited for compliance with ISO/IEC 17025 Client: McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards ΝΑΤΑ Principal: Project No.: NEW15P-0070 Approved Signatory: Alan Cullen (Principal Geotechnician) Project Name: Proposed Subdivision - Stage 3 & 4, Teralba WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 3/07/2015 Sample Details Sample ID: NEW15W-1297--S08 Client Sample ID: Test Request No .: Sampling Method: AS1289.1.2.1 cl 6.5.4 Material: Sandy Clay Date Sampled: 22/06/2015 Source: On-Site Date Submitted: 24/06/2015 Specification: No Specification Project Location: Pitt Street, Teralba TP13 - (0.4 - 0.7m) Sample Location: Borehole Number: TP13 Borehole Depth (m): 01.4 - 0.7m AS 1289.7.1.1 AS 1289.7.1.1 Shrink Test Swell Test 2.0 Swell on Saturation (%): -0.3 Shrink on drying (%): 17.0 Shrinkage Moisture Content (%): 16.6 Moisture Content before (%): Moisture Content after (%): 20.9 Est. inert material (%): 0 Est. Unc. Comp. Strength before (kPa): 250 Crumbling during shrinkage: 0 Est. Unc. Comp. Strength after (kPa): 200 Cracking during shrinkage: Nill Shrink Swell Shrinkage Sw ell 10.0 Shrink (%) Esh - Swell (%) Esw 5.0 0.0 -5.0 -10.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 5.0 45.0 50.0 Moisture Content (%) Shrink Swell Index - Iss (%): 1.1

- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: SSI:NEW15W-1297--S09 Issue No: 1 Shrink Swell Index Report Accredited for compliance with ISO/IEC 17025 Client: McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards ΝΑΤΑ Principal: Project No.: NEW15P-0070 Approved Signatory: Alan Cullen (Principal Geotechnician) Project Name: Proposed Subdivision - Stage 3 & 4, Teralba WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 3/07/2015 Sample Details Sample ID: NEW15W-1297--S09 Client Sample ID: Test Request No .: Sampling Method: AS1289.1.2.1 cl 6.5.4 Material: Sandy Clay Date Sampled: 22/06/2015 Source: On-Site Date Submitted: 24/06/2015 Specification: No Specification Project Location: Pitt Street, Teralba TP13 - (1.1 - 1.4m) Sample Location: Borehole Number: TP13 Borehole Depth (m): 1.1 - 1.4m AS 1289.7.1.1 AS 1289.7.1.1 Shrink Test Swell Test Swell on Saturation (%): 0.3 Shrink on drying (%): 0.9 Shrinkage Moisture Content (%): 12.9 Moisture Content before (%): 13.5 Moisture Content after (%): 16.2 Est. inert material (%): 0 Est. Unc. Comp. Strength before (kPa): 600+ 0 Crumbling during shrinkage: Est. Unc. Comp. Strength after (kPa): 550 Cracking during shrinkage: Minor Shrink Swell Shrinkage Sw ell 10.0 Shrink (%) Esh - Swell (%) Esw 5.0 0.0 -5.0 -10.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 5.0 45.0 50.0 Moisture Content (%) Shrink Swell Index - Iss (%): 0.6

Report No: SSI:NEW15W-1297--S11

- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Issue No: 1 Shrink Swell Index Report Accredited for compliance with ISO/IEC 17025 Client: McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards ΝΑΤΑ Principal: Project No.: NEW15P-0070 Approved Signatory: Alan Cullen (Principal Geotechnician) Project Name: Proposed Subdivision - Stage 3 & 4, Teralba WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 3/07/2015 Sample Details Sample ID: NEW15W-1297--S11 Client Sample ID: Test Request No .: Sampling Method: AS1289.1.2.1 cl 6.5.4 Material: Sandy Clay Date Sampled: 22/06/2015 Source: On-Site Date Submitted: 24/06/2015 Specification: No Specification Project Location: Pitt Street, Teralba TP15 - (0.4 - 0.7m) Sample Location: Borehole Number: TP15 Borehole Depth (m): 0.4 - 0.7m AS 1289.7.1.1 AS 1289.7.1.1 Shrink Test Swell Test Swell on Saturation (%): -0.7 Shrink on drying (%): 3.6 27.3 Shrinkage Moisture Content (%): 27.5 Moisture Content before (%): Moisture Content after (%): 27.3 Est. inert material (%): 1 Crumbling during shrinkage: 0 Est. Unc. Comp. Strength before (kPa): 500 Est. Unc. Comp. Strength after (kPa): 300 Cracking during shrinkage: Nill Shrink Swell Shrinkage Sw ell 10.0 Shrink (%) Esh - Swell (%) Esw 5.0 0.0 -5.0 -10.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 5.0 45.0 50.0 Moisture Content (%) Shrink Swell Index - Iss (%): 2.0

- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: SSI:NEW15W-1297--S14 Issue No: 1 Shrink Swell Index Report Accredited for compliance with ISO/IEC 17025 Client: McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards ΝΑΤΑ Principal: Project No.: NEW15P-0070 Approved Signatory: Alan Cullen (Principal Geotechnician) Project Name: Proposed Subdivision - Stage 3 & 4, Teralba WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 3/07/2015 Sample Details Sample ID: NEW15W-1297--S14 Client Sample ID: Test Request No .: Sampling Method: AS1289.1.2.1 cl 6.5.4 Material: Sandy Clay Date Sampled: 22/06/2015 Source: On-Site Date Submitted: 24/06/2015 Specification: No Specification Project Location: Pitt Street, Teralba TP18 - (0.4 - 0.7m) Sample Location: Borehole Number: TP18 Borehole Depth (m): 0.4 - 0.7m AS 1289.7.1.1 AS 1289.7.1.1 Shrink Test Swell Test Swell on Saturation (%): -0.1 Shrink on drying (%): 1.7 22.1 Shrinkage Moisture Content (%): 22.5 Moisture Content before (%): Moisture Content after (%): 26.1 Est. inert material (%): 5 Est. Unc. Comp. Strength before (kPa): 600+ 0 Crumbling during shrinkage: Major Est. Unc. Comp. Strength after (kPa): 350 Cracking during shrinkage: Shrink Swell Shrinkage Sw ell 10.0 Shrink (%) Esh - Swell (%) Esw 5.0 0.0 -5.0 -10.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 5.0 45.0 50.0 Moisture Content (%) Shrink Swell Index - Iss (%): 0.9

Material Test Report	Report No: MAT:NEW15W-1297S03 Issue No: 1
Client: McCLOY GROUP Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 Principal: Project No.: NEW15P-0070 Project Name: Proposed Subdivision - Stage 3 & 4, Teralba	Accredited for compliance with ISO/IEC 17025 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards WORLD RECOGNISED Approved Signatory: Dane Cullen (Senior Geotechnician) NATA Accredited Laboratory Number18686 Date of Issue: 1/07/2015
Sample DetailsSample ID:NEW15W-1297S03Sampling Method:AS1289.1.2.1 cl 6.5.4Date Sampled:22/06/2015Source:On-SiteMaterial:Sandy ClaySpecification:No SpecificationProject Location:Pitt Street, TeralbaSample Location:TP6 - (0.4 - 0.8m)	Particle Size Distribution
Other Test ResultsDescriptionMethodResultLimitsSample HistoryAS 1289.1.1Air-driedPreparationAS 1289.1.1Dry SievedLinear Shrinkage (%)AS 1289.3.4.12.5Mould Length (mm)250CrumblingNoCurlingNoCrackingYesLiquid Limit (%)AS 1289.3.1.119MethodFour PointPlastic Limit (%)AS 1289.3.2.112Plasticity Index (%)AS 1289.3.3.17	Chart
Comments N/A	

			Report No: MAT:NEW15W-1297S04
Material Tes	t Report		Issue No: 1
			Accordited for compliance with ISO/IEC 17025
Client: McCLO Suite 1	Y GROUP Level 3, 426 King Street		The results of the tests, calibrations and/or
Newcas	tle West NSW 2300		to Australian/national standards
			NATA
Principal:			N / D (22
Project No.: NEW15	P-0070		Approved Signatory: Dane Cullen
Project Name: Propose	ed Subdivision - Stage 3 & 4, Teralba		WORLD RECOONIBED (Senior Geotechnician) ACCREDITATION NATA Accredited Laboratory Number18686
			Date of Issue: 1/07/2015
Sample Details			Particle Size Distribution
Sample ID:	NEW15W-1297S04		
Sampling Method:	AS1289.1.2.1 cl 6.5.4		
Date Sampled:	22/06/2015		
Source:	On-Site		
Material: Specification:	Sandy Clay		
Project Location:	Pitt Street. Teralba		
Sample Location:	TP7 - (0.4 - 0.7m)		
	,		
Other Test Results	2		
Description	Method Result	Limite	
Sample History	AS 1289.1.1 Air-dried	Liiiits	-
Preparation	AS 1289.1.1 Dry Sieved		
Linear Shrinkage (%)	AS 1289.3.4.1 6.5		
Mould Length (mm)	250		
	No		
Cracking	INU Yes		
Liquid Limit (%)	AS 1289.3.1.1 56		
Method	Four Point		
Plastic Limit (%)	AS 1289.3.2.1 16		
Plasticity Index (%)	AS 1289.3.3.1 40		-
			Chart
Commonte			
N/A			

Material Test Rep	oort			Report	t No: MAT:NEW15W-1297S12 Issue No: 1
Client: McCLOY GROUP Suite 1, Level 3, 42 Newcastle West N	26 King Street ISW 2300				Accredited for compliance with ISO/IEC 17025 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards
Principal: Project No.: NEW15P-0070 Project Name: Proposed Subdivis	ion - Stage 3 & 4	l, Teralba			Approved Signatory: Dane Cullen (Senior Geotechnician) NATA Accredited Laboratory Number18686 Date of Issue: 1/07/2015
Sample Details				Particle Siz	e Distribution
Sample ID: NEW15W Sampling Method: AS1289.1 Date Sampled: 22/06/201 Source: On-Site Material: Sandy Cla Specification: No Specif Project Location: Pitt Street Sample Location: TP17 - (0	-1297512 .2.1 cl 6.5.4 5 ay fication t, Teralba .4 - 0.8m)				
Other Test Results					
Description	Method	Result	Limits	_	
Moisture Content (%)	AS 1289.2.1.1	<u>15.1</u>		-	
Preparation	AS 1209.1.1 AS 1280.1.1	Dry Sieved			
Linear Shrinkage (%)	AS 1289.1.1 AS 1289.3.4.1	5 0			
Mould Length (mm)	10 1200101 111	250			
Crumbling		No			
Curling		Yes			
Cracking		No			
Liquid Limit (%)	AS 1289.3.1.1	36			
Method		Four Point			
Plastic Limit (%)	AS 1289.3.2.1	17			
Standard Maximum Dry Density (t/m ³)	AS 1209.3.3.1	1.82		-	
Standard Optimum Moisture Content (%)		14.5		Chart	
Retained Sieve 19.0mm (%)		0			
Compactive Effort		Standard			
CBR At 5.0mm (%)	AS 1289.6.1.1	7		-	
Maximum Dry Density (t/m ³)		1.82			
Optimum Moisture Content (%)		14.6			
Density Ratio before Soaking (V/M ³)		1.01			
Moisture Content before Soaking (%)		14 7			
Moisture Ratio before Soaking (%)		100			
Dry Density after Soaking (t/m ³)		1.81			
Density Ratio after Soaking (%)		100			
Swell (%)		0.0			
Moisture Content of Top 30mm (%)		19.8			
Involution Content of Remaining Depth (%)		16.1 Standard			
Surcharge Mass (kg)		9.00			
				<u> </u>	

N/A

Client:

Principal:

Project No.:

Sample ID:

Source:

Material:

Description

QUALTEST Laboratory (NSW) Pty Ltd 8 Ironbark Close Warabrook NSW 2304 02 4968 4468 T: F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896 F: E: W:

Report No: MAT:NEW15W-1297--S12 Issue No: 1 Accredited for compliance with ISO/IEC 17025 McCLOY GROUP The results of the tests, calibrations and/or measurements included in this document are traceable Suite 1, Level 3, 426 King Street Newcastle West NSW 2300 to Australian/national standards ΝΑΤΑ all NEW15P-0070 Approved Signatory: Dane Cullen (Senior Geotechnician) Project Name: Proposed Subdivision - Stage 3 & 4, Teralba WORLD RECOGNISED NATA Accredited Laboratory Number18686 Date of Issue: 1/07/2015 Sample Details Particle Size Distribution NEW15W-1297--S12 Sampling Method: AS1289.1.2.1 cl 6.5.4 Date Sampled: 22/06/2015 **On-Site** Sandy Clay Specification: No Specification Project Location: Pitt Street, Teralba Limits Sample Location: TP17 - (0.4 - 0.8m) Other Test Results Method Result Limits Period of Soaking (Days) 4 Oversize Material (%) 0.0 Chart

Material Test Report

APPENDIX C:

Results of Previous Investigations by Cardno Geotech Solutions (Ref: CGS1785, dated 19 December 2014)

Test Pit Logs & Results of Laboratory Testing

PRO	JECT : ATION ·	Geote	chnical treet Ti	Inve: eralh	stigation						PF S⊢	ROJECT REF : CGS1785
EQU	IPMENT	TYPE	: 20t E	Exca	vator		METHOD : 800	mm too	thed bu	icket	0.1	
DATE	E EXCA	/ATEC): 28/1	1/14			LOGGED BY :	DS			CHECK	ED BY : ZO
LOC	ATION :	See I	Drawing	for l	ocation							
ROUND WATER LEVELS	SAMPLES & IELD TESTS	DEPTH (m)	GRAPHIC LOG	LASSIFICATION SYMBOL	MATE Soil Type, plasticit Rock T Secondar	RIAL DESCRIPTION y or particle characteristic, ype, grain size, colour y and minor components	colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / OCK STRENGTH	DYNAMIC ENETROMETER	0 HAND 0 PENETRO- 0 METER (kPa)	STRUCTURE & Other Observations
9 pe	<u>оц</u>	0.0	२० २० २० २.२० २० २० २.१० २० २.१० ४० २० इ.१० ४० ४०	0	TOPSOIL, Clayey SAND, fi and organics	ine to coarse grained, grey-	brown, with gravel	D	0-2	ä	+00 +00 +00 +00 +00 +00 +00 +00 +00 +00	
ot Encountere			<u>6 36 36 36</u> 		0.15m SANDSTONE, fine to coars	se grained, orange-red				-		
z		-			0.40m			XW - DW	M - H			
		0.5-			Testpit TP201 terminated a Refusal	at 0.40 m						
		-										
		-										
		-										
		-										
		-										
		-										
		1.5										
		-										
		-										
		2.0										
D M W ON PL	ATER / MC - Dry - Mois - Wet MC - Opti - Plas - Wa	DISTURI		SAMI D ES B SPT HP	PLES & FIELD TESTS Undisturbed Sample Disturbed Sample Forvironmental sample Sult Disturbed Sample Standard Penetration Test Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DEN VL - Very Loo L - Loose MD - Medium I D - Dense VD - Very Den	SITY se Dense Ise	RO EL VL M H VH EH	CK ST - Ex - Ve - Lo - Me - Hių - Ve - Ex	RENGTH tremely low ry low w dium gh gh ry high tremely high	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See I detai & bas	Explanate ils of abbi sis of des	ory Not eviatio	es for ns ns.		CAR	DNO GEOTE	ECH SOLL	ΙΟΙΤΙ	NS			

CLIENT : McCloy Group Pty Ltd

HOLE NO : TP201

CLIENT : McCloy Group Pty Ltd
PROJECT : Geotechnical Investigation

HOLE NO : TP203 PROJECT REF : CGS1785

LOCATION : Pitt Street, Teralba

GEOTECH_SOLUTIONS_03 LIBRARY GLB_L09_CGS_TESTHOLE_LOG_02_CGS_1785_PITT_STREET_TERALBA GPJ_17/12/2014 19:12_8:30.004

EQUIPMENT TYPE : 20t Excavator

DATE EXCAVATED : 28/11/14 LOCATION : See Drawing for location

METHOD : 800mm toothed bucket LOGGED BY : DS

SHEET : 1 OF 1

CHECKED BY : ZO

GROUND WAIEK LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC	CLASSIFICATION SYMBOL	MATEF Soil Type, plasticity Rock Ty Secondary	RAL DESCRIPTION or particle characteristic, pe, grain size, colour and minor components	colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC	100 HAND 200 PENETRO- 300 METER 100 (kPa)	STRUCTURE & Other Observations
-		- 0.0	त. कर के त. कर के त. कर के त. कर के त. कर के त. कर के त. कर के	전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	TOPSOIL, Clayey SAND, fir and organics	e to coarse grained, grey-	prown, with gravel	D	L		 	
		-			Sandy CLAY, medium plasti	city, grey-orange mottled n	ed	MC < PL				
Not Encountered	0.40m B	0.5		· · · · · · · · · · · · · · · · · · ·	SANDSTONE / SILTSTONE	(interbedded), fine graine	d, grey-orange					-
		1.0						XW - DW	М			-
		- 1.5		· · · · · · · · · · · ·	1.50m Testpit TP203 terminated at Refusal	1.50 m						
		-										
	ATER / MC - Dry - Mois - Wet //C - Opti - Plas 	DISTURI st t imum M stic Limit ter inflov	E C t	SAM U D ES B SPT HP	PLES & FIELD TESTS - Undisturbed Sample - Disturbed Sample - Environmental sample - Bulk Disturbed Sample - Standard Penetration Test - Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DEN: VL - VeryLoo L - Loose MD - Medium I D - Dense VD - VeryDen	SITY se Dense se	RO EL VL M H VH EH	- Extr - Ven - Low - Mec - High - Ven - Extr	RENGTH remely low y low f dium h y high remely high	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Districtly weathered SW - Slightly weathered FR - Fresh rock
See deta & ba	Explanato Is of abbr sis of des	ory Not reviatio scriptio	tes for ins ns.	r	CARI	ONO GEOTE	CH SOLL	ITION	١S			

EQU			: 20t I		/ator			METHOD : 800	mm too	thed bu	icket		
LOC	CATION :	See I	Drawing	for lo	ocatio	n		LUGGED BY :	05			CHECK	ED BY : 20
		2001											
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATEF Soil Type, plasticity Rock Ty Secondary	RIAL DESCRIPTION or particle characteristic, rpe, grain size, colour or and minor components	colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (KPa)	STRUCTURE & Other Observations
		0.0	रेन के क्व र. का का क का का का इ. का का क हे का का क			TOPSOIL, Gravelly Clayey with organics	SAND, fine to coarse grain	ed, grey-brown,	D				
		-			0.15m	Sandy CLAY, low to medium	n plasticity, grey-orange m	ottled red	MC < PL				
		-	· · · · · · · ·		0.2011	SANDSTONE, fine grained,	grey-orange						
countered		-											
Not End		0.5 —											-
		-							XW - DW	М			
		-											
		-											
		1.0 —			1.00m	Testpit TP205 terminated at Refusal	t 1.00 m						
.30.004		-											
/2014 19:12 8		-											
BA.GPJ 17/12		-											
TREET_TERAI		1.5 —											-
		-											
06_02 CGS		-											
TESTHOLE_L		-											
B Log CGS		2.0											
SOLUTIONS_03 LIBRARY.GL	VATER / MC - Dry 1 - Mois V - Wet MC - Opti L - Plas Wat	nisturi st mum M stic Limit ser inflov		SAMF U D ES B SPT HP	PLES 8 - Und - Dist - Env - Bull - Star - Han	FIELD TESTS listurbed Sample urbed Sample ironmental sample Disturbed Sample ndard Penetration Test d/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DEN VL - Very Loo L - Loose MD - Medium D - Dense VD - Very Der	SITY se Dense ise	RO EL VL M H VH EH	- Ex - Ve - Lo - Me - Mi - Hi - Ve - Ex	RENGTH Atremely low ery low w edium gh ery high tremely high	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See deta & b	Explanate ails of abbr asis of des	ory Not eviatio criptio	es for ns ns.			CAR	DNO GEOTE	ECH SOLU	IOITI	NS			·

CLIENT : McCloy Group Pty Ltd PROJECT : Geotechnical Investigation

LOCATION : Pitt Street, Teralba

HOLE NO : TP205 PROJECT REF : CGS1785 SHEET : 1 OF 1

CLIENT	÷	McClov Group Ptv Ltd	
	•		

HOLE NO : TP206 PROJECT REF : CGS1785

CHECKED BY : ZO

PROJECT : Geotechnical Investigation LOCATION : Pitt Street, Teralba

EQUIPMENT TYPE : 20t Excavator

METHOD : 800mm toothed bucket

DATE EXCAVATED : 28/11/14

LOGGED BY : DS

SHEET : 1 OF 1

100	LATION	See	Ura	wing	for	loca	ntion								
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	Онарар	LOG	CLASSIFICATION SYMBOL		MATE Soil Type, plasticity Rock Ti Secondary	RIAL DESCRIPTION y or particle characteristic, ype, grain size, colour y and minor components	colour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO-	300 METEK 400 (kPa)	STRUCTURE & Other Observations
		- 0.0 -	<u>80</u> 20 20 20 20 20 20 20 20 20 20 20 20 20	00.00 20.20 70.40 70.40 70.40 70.40 20.40 20.40			TOPSOIL, Gravelly Clayey with organics	SAND, fine to coarse grain	ed, grey-brown,	D					
				1		0.15	5m Gravelly Sandy CLAX med	ium plasticity, grav-orange	mottled red			-			
			V					ian plasticity, grey orange	motica rea	MC < PL					
						0.30)m								
							SANDSTONE / SILTSTON	⊢ (interbedded), fine graine	d, grey-orange						
	0.50m B	0.5 -			-										
red															
ncounte															
Not E															
	0.00m														
	0.5011									XW	м				
		1.0 -													
					-										
					-										
		1.5 -		<u>-</u> .		1.50	Dm Testpit TP206 terminated a	t 1.50 m							
							Refusal								
		20													
		2.0-													
	VATER / MO) - Dry 1 - Moi V - We DMC - Opt PL - Pla Wa	DISTUR st t imum M stic Limi ter inflo	E 1C it w		SAM U D ES B SPT HP	PLES - U - E - E - S - S	S & FIELD TESTS Jndisturbed Sample Disturbed Sample Environmental sample Julk Disturbed Sample Standard Penetration Test Hand/Pocket Penetrometer	CONSISTENCYVS- Very SoftS- SoftF- FirmSt- StiffVSt- Very StiffH- Hard	RELATIVE DEN VL - Very Loo L - Loose MD - Medium D - Dense VD - Very Der	SITY se Dense nse	RO EL VL M H VH EH	- E) - Ve - Ve - Lo - M - Hi - Ve - E)	TRENG tremely ery low w edium gh ery high tremely	r H / low / high	ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See deta & ba	e Explanat ails of abb asis of de	ory No reviatio	tes ons ns.	for			CAR	DNO GEOTE	ECH SOLL	ITIO	NS				

Cardno (NSW/ACT) Pty Ltd trading as Cardno Geotech Solutions ABN 95 001 145 035 P.O Box 4224, Edgeworth 2285 Unit 4/5 Arunga Dr, Beresfield 2322 [P] 0249 494300 [F] 0249 660485 [E] geotech@cardno.com.au

						Ca	lif	orr	nia	Be	ari	ing	Ra	atio	D R	ер	ort	: (1	. P	oint	t)							
Client: Client addi Job Numbe	ress: er:		McClo PO Bo CGS/1	y Gro x 22: 1785	oup Pi 14 Da	ty Ltd angar	NSW	2309)												Rep Rep	oort N	umbe ate:	r:	C(GS/178 7/12/2	35 - 8 2014	
Project:		(Geote	chnic	cal Inv	vestig	ation	1													Ord	ler Nu	mber	:				
Location		5	Stage	2 Pit	tt Stre	et, T	eralba	3													_			Page	e 1 of :	1		
Lab No:			14/11	1798																	San	nple L	ocatio.	on 	-	-		
Date Samp	plea:		28/11	/201	14																		ł	PIT NO	. 1P20)3 P		
Sampled P			Dimce	201 Stoi	ianov	eki																c	ر عامسد		b 0 4	0_0_80n	n	
Sample Me	ethod:		AS128	39.1.3	2.1 c6	5.5.4 I	Backh	oe													Sumple Depth 0.40 0.0					0.001		
Material So	ource:	1	In situ	u																	Test Method : AS1289 5).5.1.1 & A	\$1289.6.1.1	
For Use As	5:																				Lot	Numl	ber:		-			
Remarks:			-																		Iter	n Nur	nber :		-			
												CBF	1 Point G	raph ration														
4,100 4,000																										<		
3,900 3,800 3,700																								/				
3,600																	1						\leq					
3,400 3,300	<u> </u>															[-	_							
3,200 3,100 3,000																												
2,900 2,800	-				-									1														
2,700 2,600 2,600					-	-				-		\sim				e												
2,500 2,400 2,300																												
2,200 8, 2,100					-							\vdash																
5 2,000 1,900 1,800																												
1,700					-																							
1,500	-																											
1,200							*																					
1,000 900	-					*				-																		
800 700 600																												
500 400				ſ	-																							
300 200	\mathbb{E}																											
0	0	1	1 1	.5	2 2	2.5	3	L, ,	4	L	5	1	Penetrat	j	7	.5	-	1	1	10			1		12	.5		
Maximu	um Dry	Densi	ity - M[DD (t/	m³):				1	L.86					Dry D	ensity	/ after	Soak	(t/m³)):				1	.86			
Optimur	m Moist	ture Co	ontent	- OMC	2 (%) :				1	14.2				Μ	oistur	e Cor	ntent a	fter S	oak (%	%):				1	4.3			
Nomin	Com	pactiv Maxi	e Effori mum D	t : Dry De	nsity	_			Sta	ndar	1				Densi	ty Ra	tio afte	er Soa	k (%)	:				1	100			
Nominate	C ed % C	ompac Optimu	tion: m Mois	, sture (Content	t				100				Mois	Field ture C	Mois onter	ture C nt (Top	onten) afte	t (%) r Pene	: tration				9	9.6			
	С	ompac	tion :							100				Moist	ure Co	onten	(%) t (Tota	: I) afte	er Pen	etratior	n			1	5.7			
Achieved Achieved P	Achieved Dry Density before Soak (t/m ³) :								1	L.87							(%)	:			14.9							
(%):							101								CBR 2.5mm (%) :							9						
Achie	eved M Percer	loisture	e Conte	ent (% num N): Moistur	e	13.5							CBR 5.0mm (%) :											11			
Content (%) :						na	95								Minimum Specified CBR Value (%) :													
	Pe	riod (E	Days) :		JUN	y	Soaked / 4 days Oversize							28%														
Sv	well (%) / Su	rcharge	e (kg):	:				0.5	/ 4.5	kg				C	BR	Value	e (%):						11			
Soil Descri	iption	:										S	ILSTO	NE/SA	NDST	ONE	grey-o	range										

This document is issued in accordance with NATA's accreditation requirements. Approved Signatory Form Number RP29-3

NATA Accred No:15689

Cardno (NSW/ACT) Pty Ltd trading as Cardno Geotech Solutions ABN 95 001 145 035 P.O Box 4224, Edgeworth 2285 Unit 4/5 Arunga Dr, Beresfield 2322 [P] 0249 494300 [F] 0249 660485 [E] geotech@cardno.com.au

٦

						C	alif	orr	nia	Be	ari	ing	j Ra	ati	o R	lep	or	t (1	L P	oir	nt)							
Client:		Мо	Cloy	/ Gro	oup Pt	y Lt	d														Re	port N	lumbe	r:	C	GS/17	'85 - 10	
Client addr	ess:	PC) Bo	x 22 :	14 Da	inga	r NSW	2309	•																			
Job Numbe	er:	CG	iS/1	785																	Re	port D	ate:		1	17/12	/2014	
Project:		Ge	oteo	chnic	al Inv	/esti	gatior	ו													Or	der Nı	umber	:				
Location		St	age	2 Pit	t Stre	et, 1	eralb	а																Page	e 1 of	1		
Lab No:		14	/11	800																	Sa	mple	Locatio	on				
Date Samp	led:	28	/11	/201	14																		I	Pit No	. TP2	06		
Date Teste	d:	12	/12	/201	14																		S	ampl	е Туре	зB		
Sampled By	y:	Di	mce	Stoj	anovs	ski																S	Sample	e Dep	pth 0.50-0.90m)m	
Sample Me	thod:	AS	5128	9.1.2	2.1 c6	.5.4	Backh	ioe																				
Material So	ource:	In	situ																		le	st Met	hod :		AS128	9.5.1.1 &	AS1289.6.1.1	
For Use As:	:	-																			Lot	: Num	ber:		-			
Remarks:		-																			Ite	m Nu	mber		-			
					_	_						CBF Force	R 1 Point C e vs Pene	Braph tration										_	_			
7,400 - 7,200 -																									\geq	*		
7,000 - 6,800 -																												
6,600 - 6,400 -									-	-	-														-			
6,200 - 6,000 -								-			-	-	-								-				-	=		
5,800 - 5,600 -							_																					
5,200																			1								1	
4,800													_				\sim										1	
4,000																*										+	ł	
£ 4,000																										+	ł	
2 3,600 - 3,400 -													\sim															
3,200																										<u> </u>		
2,800											*																	
2,400								-		_			_															
2,000																												
1,600 1,400																										+	1	
1,200 1,000																												
800 - 600 -			~	<								-													-			
400 - 200 -		\neg	\triangleleft												-	-										=		
	0.5	1	1.3	5	2 2	.5	3		4		5		Penetra	tion (mm)		7.5		-	-		10				1	2.5		
Maximu	ım Dry D	ensity	- MD	D (t/i	m³):					1.78					Dry D	ensity	after	Soak	(t/m³):				1	.74			
Optimum	n Moistur	e Cont	tent -	OMC	2 (%) :	_				15.5				Μ	1oistui	re Con	tent a	fter S	oak (°	%):				1	7.9			
Nomina	Compa	ctive E	ffort	: 77 Dei	ncity	_			Sta	ndar	d				Dens	ity Ra	tio aft	er Soa	ık (%)):	_				98			
Neurinete	Corr	pactio	on :	,						100				Moio	Field	d Moist	ture C	onten	t (%)	:	_			1	1.6			
Nominate	Corr	npactic	moisi	lure C	Jonteni					100				MUIS			(%) (%)	: :				18.5						
Achieved [ieved Dry Density before Soak (t/m ³) : 1.79												MOIST	ture C	ontent	(10ta) (%)	arte :	er Pen	etratio	n				15				
Achieved Percentage of Maximum Dry Density (%): 101											CBR 2.5mm (%) : 14																	
Achie	eved Mois	sture C	Conte	nt (%	o):				:	14.9						CBR	5.0mi	n (%)	:		17							
Achieved I	Percenta Cont	ge of (tent (%	Optim %):	ium M	loisture	e				96				Mi	inimur	n Spe	cified	CBR V	'alue ((%):					-			
Test Condit	ion (Soa Perio	ked/U	nsoak vs):	(ed)	' Soakiı	ng		s	oake	d / 4	davs		Oversize 3%															
Sw	/ell (%) /	Surch	arge	(ka).	:				3.0	/ 4.5	ka		CBR Value (%) : 17															
Soil Descrir	ntion			. 57]		-	c		NF/S/			arev-r	range										
JUII DESCIT												3	112310	/INL/3/	וכשוור		JICY-(nange										

Approved Signatory Form Number Q___ RP29-3 Ian Piper

APPENDIX D:

CSIRO Sheet BTF 18

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
А	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites with only slight ground movement from moisture changes
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes
Е	Extremely reactive sites, which can experience extreme ground movement from moisture changes
A to P	Filled sites
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

Trees can cause shrinkage and damage

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred. The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS		
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category
Hairline cracks	<0.1 mm	0
Fine cracks which do not need repair	<1 mm	1
Cracks noticeable but easily filled. Doors and windows stick slightly	<5 mm	2
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired	5–15 mm (or a number of cracks 3 mm or more in one group)	3
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15–25 mm but also depend on number of cracks	4

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited