Proposed Subdivision
Stages 3 & 4
Pitt Street, Teralba
Geotechnical Assessment

Pitt Street, Teralba

NEW15P-0070-AA.Rev1
28 August 2015

Qualtest
LABORATORY (NSW) PTY LTD

GEOTEchnical I LABORATORY I EARTHWORKS I QUARRY I CONSTRUCTION MATERIAL TESTING
28 August 2015

McCloy Group
Suite 1, Level 3, 426 King Street
NEWCASTLE WEST NSW 2309

Attention: Jon Hines

Dear Sir

RE: PROPOSED SUBDIVISION - STAGES 3 & 4
PITT STREET, TERALBA
GEOTECHNICAL ASSESSMENT

Please find enclosed our Geotechnical Assessment report for the proposed residential subdivision of Stages 3 & 4, Pitt Street, Teralba.

The report includes recommendations for Site Classification in accordance with AS2870-2011, “Residential Slabs and Footings”, pavement design and construction for internal subdivision roads, retaining wall design parameters and assessment of excavation conditions.

Qualtest have previously provided a Geotechnical Assessment report for the proposed subdivision (Reference: NEW15P-0070-AA, 13 July 2015). This revised report incorporates comments and recommendations on pavement design from Lake Macquarie City Council assessment letter (Reference: SCC/26/2015, 7 August 2015).

If you have any questions regarding this report, please do not hesitate to contact Alan Cullen or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Jason Lee
Principal Geotechnical Engineer

Qualtest Laboratory (NSW) Pty Ltd ABN: 98 153 268 89
8 Ironbark Close Warabrook NSW 2304
T: (02) 4968 4468 F: (02)4960 9775 W: www.qualtest.com.au
Table of Contents:

1.0 INTRODUCTION ... 1
2.0 FIELD WORK... 1
3.0 SITE DESCRIPTION... 2
 3.1 Surface Conditions ... 2
 3.2 Subsurface Conditions .. 2
4.0 LABORATORY TESTING.. 4
5.0 DISCUSSION AND RECOMMENDATIONS .. 6
 5.1 Site Classification to AS2870-2011.. 6
 5.2 Pavement Design... 7
 5.2.1 Design Subgrade CBR Values.. 7
 5.2.2 Design Traffic Loadings... 7
 5.2.3 Flexible Pavement Thickness Design... 8
 5.3 Excavation Conditions and Depth to Rock... 10
 5.4 Recommended Batter Slopes.. 11
 5.5 Retaining Wall Foundation Design Parameters... 12
 5.6 Site Preparation.. 12
 5.7 Fill Construction Procedures... 13
 5.8 Suitability of Site Materials for Re-Use as Fill ... 14
 5.9 Special Construction Requirements and Site Drainage .. 14
6.0 LIMITATIONS... 15

Attachments:

Figure AA1: Approximate Test Pit Location Plan
Appendix A: Results of Field Investigations
Appendix B: Results of Laboratory Testing
Appendix C: Results of Previous Investigations by Cardno
Appendix D: CSIRO Sheet BTF 18
1.0 INTRODUCTION

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this report on behalf of McCloy Group (McCloy), for the proposed residential subdivision of Stages 3 & 4, Pitt Street, Teralba.

Based on drawings of the proposed subdivision provided by McCloy, the proposed development is understood to comprise subdivision into 38 residential lots for Stage 3 (Lots 301 to 338), 38 residential lots for Stage 4 (Lots 401 to 438), and construction of road pavements for internal subdivision roads as shown on Figure AA1.

The scope of work for the geotechnical investigation included providing discussion and recommendations on the following:

- Site classification to AS2870-2011, “Residential Slabs and Footings” for residential lots within Stages 3 & 4.
- Pavement design for subdivision roads;
- Retaining wall design parameters;
- Recommendations for earthworks guidelines, including stability of cuttings, excavation conditions, and the suitability of the site soils for use as fill and on fill construction procedures;

This report presents the results of the field work investigations and laboratory testing, and provides recommendations for the scope outlined above.

2.0 FIELD WORK

Field work investigations were carried out on 22 June 2015 and comprised of:

- DBYD search of proposed test locations was undertaken to clear proposed test locations for the presence of underground services;
- Site walkover to make observations of surface features at the property and in the immediate surrounding area;
- Excavation of 18 test pits (TP01 to TP18) using a 20 tonne tracked excavator equipped with a 600mm wide toothed bucket, to depths of between 0.45m to 2.50m, within the proposed subdivision area;
- Bulk disturbed samples, undisturbed samples (U50 tubes), and small bag samples were taken for subsequent laboratory testing;
- Test pits were backfilled with the excavation spoil and compacted using the excavator bucket and tracks.

Investigations were carried out by an experienced Principal Geotechnical Engineer and Principal Geotechnician from Qualtest, who located the test pits, carried out the sampling and testing, and provided field logs.

Test pits were located relative to road centreline pegs installed by project surveyors and existing site features. Reduced levels of the test pits have been interpolated from the survey plans provided. Approximate test pit locations are shown on the attached Figure AA1.

Engineering logs of the test pits are presented in Appendix A.

Fieldwork and laboratory testing data from previous work conducted by Cardno Geotech Solutions on the adjoining Stage 2 (Ref: CGS1785, dated 19 December 2014), has been used to supplement information collected during the current investigations where applicable. Copies of the relevant test pit logs and laboratory test certificates are presented in Appendix C.
3.0 SITE DESCRIPTION

3.1 Surface Conditions

The site comprises Stages 3 & 4 of the proposed subdivision at Pitt Street, Teralba, as shown on Figure AA1 attached. The site is located to the south of the existing Stage 1 & 2 subdivision development, accessed off the end of Pitt Street.

The site is bounded by existing residential development and the current Stage 1 & 2 subdivision under construction to the north and north west. Undeveloped bushland, future stages of the subdivision development and future open space bound the remainder of the site, with the Main Northern Railway looping around the north, east and southern boundary of the entire development area.

The site is located within a region of gently to moderately undulating topography, on the southern facing upper to middle slopes of a prominent east trending spur. Site slopes generally vary from about 5° to 6° over the majority of the site, increasing up to angles in the order of about 8° to 10° on the upper slopes in the northern portion of the site, and 10° to 12° locally along the sides of a gully that runs along the southern boundary of the site.

Ground levels are generally in the range from about RL 51m (AHD) at the northern end of the site, falling to about RL 16m (AHD) on the southern end of the site.

The site is typically covered by undeveloped bushland, vegetated by a moderate to dense coverage of mature trees with an undergrowth of native shrubs, bushes and grass cover. A number of access tracks cross the site to provide access.

On the day of the investigation which was carried out following a period of wet weather, the majority of the site was judged to be moderately drained by way of surface runoff following the natural topography towards an incised gully that runs roughly along the southern boundary of the site, with infiltration during wet weather causing the near surface topsoil and colluvium soils to become wet and boggy in places. Trafficability was judged to be moderate by way of 4WD vehicle along the existing access tracks.

3.2 Subsurface Conditions

Reference to the 1:100,000 Newcastle Coalfield Regional Geology Sheet indicates the site to be underlain by the Clifton Subgroup of the Narrabeen Group, and Moon Island Beach Subgroup of the Newcastle Coal Measures, which are characterised by Conglomerate, Sandstone, Siltstone, Claystone, Tuff and Coal rock types.

Table 1 presents a summary of the typical soil types encountered at test pit locations during the field investigation, divided into representative geotechnical units.

Table 2 contains a summary of the distribution of the above geotechnical units at the test pit locations.
TABLE 1 – SUMMARY OF GEOTECHNICAL UNITS AND SOIL TYPES

<table>
<thead>
<tr>
<th>Unit</th>
<th>Soil Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TOPSOIL</td>
<td>Silty Clayey SAND - fine to medium grained, grey to brown, fines of low plasticity, root affected.</td>
</tr>
<tr>
<td>2</td>
<td>COLLUVIUM</td>
<td>Silty Clayey SAND, fine to medium grained, pale grey, grey and brown, fines of low plasticity; and Sandy CLAY, medium to high plasticity, pale brown yellow, sand fine to coarse grained.</td>
</tr>
<tr>
<td>3</td>
<td>RESIDUAL SOIL</td>
<td>Sandy CLAY, medium plasticity and medium to high plasticity, pale grey-brown, yellow-brown and mottled red-grey, sand fine to coarse grained; With depth grading into a Silty Sandy CLAY in places, sand content increasing, with some ironstone staining.</td>
</tr>
<tr>
<td>4</td>
<td>EXTREMELY WEATHERED ROCK</td>
<td>SANDSTONE, fine to medium grained, pale brown, pale grey-brown and red, assessed to be of low strength rock; CONGLOMERATE, excavating as a Clayey Sandy GRAVEL, fine to coarse grained pale brown-yellow.</td>
</tr>
<tr>
<td>5</td>
<td>HIGHLY WEATHERED ROCK</td>
<td>SANDSTONE, fine to medium grained, pale brown, pale grey-brown and red, assessed to be medium to high strength rock, with some very high strength bands;</td>
</tr>
</tbody>
</table>

The Unit 5 Highly Weathered Rock was encountered as indicated on the appended engineering logs and summarised in Table 2.

Test pits TP02, TP03 and TP16 located on the upper slopes of the ridge / spur line were terminated due to practical refusal of the 20 tonne excavator within highly weathered rock at depths of 0.70m, 0.45m and 0.60m, respectively.

Test pits TP05, TP08, TP11, TP15 and TP17 were terminated due to practical refusal of the 20 tonne excavator within highly weathered rock at depths varying from 1.1m to 2.2m.

The remaining test pits were terminated due to target depths being achieved.

No groundwater levels were encountered in the test pits during the limited time that they remained open on the day of the field investigations.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.
TABLE 2 – SUMMARY OF GEOTECHNICAL UNITS ENCOUNTERED AT EACH TEST PIT LOCATION

<table>
<thead>
<tr>
<th>Location</th>
<th>Unit 1 Topsoil</th>
<th>Unit 2 Colluvium</th>
<th>Unit 3 Residual</th>
<th>Unit 4 Extremely Weathered Rock</th>
<th>Unit 5 Highly Weathered Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth in metres (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP01</td>
<td>0.00 - 0.30</td>
<td>-</td>
<td>0.30 - 3.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP02</td>
<td>0.00 - 0.20</td>
<td>-</td>
<td>0.20 - 0.60</td>
<td>-</td>
<td>0.60 - 0.70 *</td>
</tr>
<tr>
<td>TP03</td>
<td>0.00 - 0.20</td>
<td>-</td>
<td>0.20 - 0.35</td>
<td>-</td>
<td>0.35 - 0.45 *</td>
</tr>
<tr>
<td>TP04</td>
<td>0.00 - 0.30</td>
<td>0.30 - 0.80</td>
<td>0.80 - 2.30</td>
<td>-</td>
<td>2.30 - 2.50</td>
</tr>
<tr>
<td>TP05</td>
<td>0.00 - 0.13</td>
<td>0.13 - 0.25</td>
<td>0.25 - 1.40</td>
<td>-</td>
<td>1.40 - 1.60 *</td>
</tr>
<tr>
<td>TP06</td>
<td>0.00 - 0.20</td>
<td>-</td>
<td>0.20 - 2.20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP07</td>
<td>0.00 - 0.10</td>
<td>0.10 - 0.20</td>
<td>0.20 - 2.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP08</td>
<td>0.00 - 0.15</td>
<td>0.15 - 0.30</td>
<td>0.30 - 1.10</td>
<td>-</td>
<td>1.10 - 1.90 *</td>
</tr>
<tr>
<td>TP09</td>
<td>0.00 - 0.15</td>
<td>0.15 - 0.30</td>
<td>0.30 - 2.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP10</td>
<td>0.00 - 0.25</td>
<td>0.25 - 0.50</td>
<td>0.50 - 2.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP11</td>
<td>0.00 - 0.20</td>
<td>-</td>
<td>0.20 - 0.80</td>
<td>-</td>
<td>0.80 - 1.10 *</td>
</tr>
<tr>
<td>TP12</td>
<td>0.00 - 0.20</td>
<td>0.20 - 0.40</td>
<td>0.40 - 1.80</td>
<td>-</td>
<td>1.80 - 2.20</td>
</tr>
<tr>
<td>TP13</td>
<td>0.00 - 0.15</td>
<td>0.15 - 0.30</td>
<td>0.30 - 1.80</td>
<td>-</td>
<td>1.80 - 2.10</td>
</tr>
<tr>
<td>TP14</td>
<td>0.00 - 0.30</td>
<td>-</td>
<td>0.30 - 2.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP15</td>
<td>0.00 - 0.15</td>
<td>0.15 - 0.30</td>
<td>0.30 - 1.40</td>
<td>-</td>
<td>1.40 - 1.60 *</td>
</tr>
<tr>
<td>TP16</td>
<td>0.00 - 0.10</td>
<td>-</td>
<td>0.10 - 0.50</td>
<td>-</td>
<td>0.50 - 0.60 *</td>
</tr>
<tr>
<td>TP17</td>
<td>0.00 - 0.20</td>
<td>0.20 - 0.40</td>
<td>0.40 - 2.00</td>
<td>-</td>
<td>2.00 - 2.20</td>
</tr>
<tr>
<td>TP18</td>
<td>0.00 - 0.13</td>
<td>0.13 - 0.25</td>
<td>0.25 - 1.30</td>
<td>1.30 - 2.20</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: * = Practical refusal of 20 tonne excavator met on Highly Weathered Rock.

4.0 LABORATORY TESTING

Samples collected during the field investigations were returned to our NATA accredited Warabrook Laboratory for testing which comprised of:

- (6 no.) Shrink / Swell tests;
- (3 no.) Atterberg Limit tests;
- (6 no.) California Bearing Ratio (4 day soaked) & Standard Compaction.

Results of the laboratory testing are presented in Appendix B, with a summary of the Shrink/Swell, Atterberg Limits, and CBR test results presented in Tables 3, 4 and 5.
TABLE 3 – SUMMARY OF SHRINK / SWELL TESTING RESULTS

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (m)</th>
<th>Material Description</th>
<th>I_{ss} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP09</td>
<td>0.40 – 0.70</td>
<td>Sandy CLAY</td>
<td>4.1</td>
</tr>
<tr>
<td>TP11</td>
<td>0.50 – 0.80</td>
<td>Sandy CLAY</td>
<td>1.6</td>
</tr>
<tr>
<td>TP13</td>
<td>0.40 – 0.70</td>
<td>Sandy CLAY</td>
<td>1.1</td>
</tr>
<tr>
<td>TP13</td>
<td>1.10 – 1.40</td>
<td>Sandy CLAY</td>
<td>0.6</td>
</tr>
<tr>
<td>TP15</td>
<td>0.40 – 0.70</td>
<td>Sandy CLAY</td>
<td>2.0</td>
</tr>
<tr>
<td>TP18</td>
<td>0.40 – 0.70</td>
<td>CLAY / Sandy CLAY</td>
<td>0.9</td>
</tr>
</tbody>
</table>

TABLE 4 – SUMMARY OF ATTERBERG LIMITS TESTING RESULTS

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (m)</th>
<th>Material Description</th>
<th>Liquid Limit (%)</th>
<th>Plasticity Index (%)</th>
<th>Linear Shrinkage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP06</td>
<td>0.40 – 0.80</td>
<td>Sandy CLAY</td>
<td>19</td>
<td>7</td>
<td>2.5</td>
</tr>
<tr>
<td>TP07</td>
<td>0.40 – 0.70</td>
<td>Sandy CLAY</td>
<td>56</td>
<td>40</td>
<td>6.5</td>
</tr>
<tr>
<td>TP17</td>
<td>0.40 – 0.80</td>
<td>Sandy CLAY</td>
<td>36</td>
<td>19</td>
<td>5.0</td>
</tr>
</tbody>
</table>

TABLE 5 – SUMMARY OF CBR TESTING RESULTS

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (m)</th>
<th>Field Moisture Content (%)</th>
<th>Optimum Moisture Content (%)</th>
<th>Relationship of Field MC to OMC (%)</th>
<th>CBR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP04</td>
<td>0.40 – 0.60</td>
<td>23.1</td>
<td>23.5</td>
<td>0.4 dry</td>
<td>4.0</td>
</tr>
<tr>
<td>TP05</td>
<td>0.50 – 0.80</td>
<td>20.3</td>
<td>21.7</td>
<td>1.4 dry</td>
<td>4.0</td>
</tr>
<tr>
<td>TP12</td>
<td>0.50 – 0.80</td>
<td>29.5</td>
<td>26.4</td>
<td>3.1 wet</td>
<td>3.5</td>
</tr>
<tr>
<td>TP14</td>
<td>0.30 – 0.60</td>
<td>20.6</td>
<td>18.6</td>
<td>2.0 wet</td>
<td>9</td>
</tr>
<tr>
<td>TP17</td>
<td>0.40 – 0.80</td>
<td>15.1</td>
<td>14.6</td>
<td>0.5 wet</td>
<td>7</td>
</tr>
<tr>
<td>TP18</td>
<td>0.40 – 0.70</td>
<td>28.6</td>
<td>23.8</td>
<td>4.8 wet</td>
<td>6</td>
</tr>
</tbody>
</table>

Cardno Geotech Solutions - CBR testing (Ref: CGS1785, 19 December 2014)

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (m)</th>
<th>Field Moisture Content (%)</th>
<th>Optimum Moisture Content (%)</th>
<th>Relationship of Field MC to OMC (%)</th>
<th>CBR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP203</td>
<td>0.40 – 0.80</td>
<td>9.6</td>
<td>14.2</td>
<td>4.6 dry</td>
<td>11</td>
</tr>
<tr>
<td>TP206</td>
<td>0.50 – 0.90</td>
<td>11.6</td>
<td>15.5</td>
<td>3.9 dry</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 6 also include a summary of laboratory testing information where applicable from the previous Report on Geotechnical Investigation by Cardno Geotech Solutions (CGS) from the adjoining proposed Stage 2 development (Ref: CGS1785, 19 December 2014), with a copy of the CGS test results included in Appendix C.
5.0 DISCUSSION AND RECOMMENDATIONS

5.1 Site Classification to AS2870-2011

Based on the results of the field work and laboratory testing, residential lots located within the proposed subdivision of Stages 3 & 4, Pitt Street, Teralba, as shown on Figure AA1, are classified in their current condition in accordance with AS2870-2011 ‘Residential Slabs and Footings’, as shown in Table 6.

TABLE 6 – SITE CLASSIFICATION TO AS2870-2011

<table>
<thead>
<tr>
<th>Lot Numbers</th>
<th>Site Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 3 – Lots 301 to 338</td>
<td>M</td>
</tr>
<tr>
<td>Stage 4 – Lots 401 to 438</td>
<td>M</td>
</tr>
</tbody>
</table>

If site re-grading works involving cutting or filling are performed after the date of this assessment, the classification may change and further advice should be sought.

Final site classification will be dependent on a number of factors, including depth of topsoil, depth of fill and residual soil, reactivity of the natural soil and any fill material placed, and the level of supervision carried out. Re-classification of lots should be confirmed by the geotechnical authority at the time of construction following any site re-grade works.

A characteristic free surface movement of 20mm to 40mm is estimated for the lots classified as Class ‘M’ in their existing condition. The effects of changes to the soil profile by additional cutting and filling and the effects of past and future trees should be considered in selection of the design value for differential movement.

Footings for the proposed development should be designed and constructed in accordance with the requirements of AS2870-2011.

The classification presented above assumes that:

- All footings are founded in controlled fill (if applicable) or in the residual clayey soils or rock below all non-controlled fill, topsoil material and root zones, and fill under slab panels meets the requirements of AS2870-2011, in particular, the root zone must be removed prior to the placement of fill materials beneath slabs;
- The performance expectations set out in Appendix B of AS2870-2011 are acceptable, and that site foundation maintenance is undertaken to avoid extremes of wetting and drying;
- Footings are to be founded outside of or below all zones of influence resulting from existing or future service trenches;
- The constructional and architectural requirements for reactive clay sites set out in AS2870-2011 are followed;
- Adherence to the detailing requirement outlined in Section 5 of AS2870-2011 ‘Residential Slabs and Footings’ is essential, in particular Section 5.6, ‘Additional requirements for Classes M, H1, H2 and E sites’ including architectural restrictions, plumbing and drainage requirements;
- Site maintenance complies with the provisions of CSIRO Sheet BTF 18, “Foundation Maintenance and Footing Performance: A Homeowner’s Guide”, a copy of which is attached in Appendix D.
All structural elements on all lots should be supported on footings founded beneath all uncontrolled fill, layers of inadequate bearing capacity, soft/loose, wet or other potentially deleterious material.

If any localised areas of uncontrolled fill of depths greater than 0.4m are encountered during construction, footings should be designed in accordance with engineering principles for Class ‘P’ sites.

5.2 Pavement Design

5.2.1 Design Subgrade CBR Values

Based on the results of the field work, laboratory testing, and previous experience in the surrounding area, the following design California Bearing Ratio (CBR) value has been adopted for pavement thickness design for proposed internal subdivision roads.

<table>
<thead>
<tr>
<th>Subgrade Material</th>
<th>Design CBR (%)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Clay Soil</td>
<td>3.5</td>
<td>All road sections unless stated otherwise</td>
</tr>
<tr>
<td>Residual Clay Soil</td>
<td>5.0</td>
<td>Pitt Street, Ch. 660m to 875m</td>
</tr>
<tr>
<td>Weathered Rock</td>
<td>8.0</td>
<td>Ripped and re-compacted</td>
</tr>
</tbody>
</table>

Fill placed at road subgrade level should be assessed by a geotechnical authority. If the fill is assessed to have a CBR different to that of the design CBR, then a revised pavement design will be required for that section.

Subgrade should be prepared in accordance with the site preparation requirements presented in Section 5.4.

5.2.2 Design Traffic Loadings

The design traffic loading adopted for internal subdivision roads in accordance with Lake Macquarie City Council, Engineering Guidelines to The Development Control Plan, Part 1 – Design Guidelines, December 2013, in terms of equivalent standard axles (ESA’s) is as follows:

<table>
<thead>
<tr>
<th>Road Section</th>
<th>Classification</th>
<th>Design Traffic (ESA’s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitt Street</td>
<td>Collector Road</td>
<td>4 x 10^6</td>
</tr>
<tr>
<td>Bowline Street</td>
<td>Local Road Primary or Secondary</td>
<td>4 x 10^5</td>
</tr>
<tr>
<td>Sail Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outrigger Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road No. 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the event that a different design traffic loading is applicable, then the pavement thickness designs presented in this report should be reviewed.
5.2.3 Flexible Pavement Thickness Design

Flexible pavement thickness design has been based on the procedures outlined in:

- Australian Road Research Board, Special Report No. 41 (ARRB-SR41);

Flexible Pavement Thickness Designs are presented in Table 9 and Table 10.

TABLE 9 – FLEXIBLE PAVEMENT THICKNESS DESIGN SUMMARY

<table>
<thead>
<tr>
<th>Road Classification</th>
<th>Collector Road (Pitt Street)</th>
<th>Clay Subgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Section</td>
<td>300m – 660m</td>
<td>660m - 875m</td>
</tr>
<tr>
<td>Design Traffic Loading (ESA’s)</td>
<td>4 x 10^6</td>
<td>4 x 10^6</td>
</tr>
<tr>
<td>Design Subgrade CBR (%)</td>
<td>8.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Wearing Course (mm)</td>
<td>45 – AC14 (Dense Graded)</td>
<td>45 - AC14 (Dense Graded)</td>
</tr>
<tr>
<td>Base Course (mm)</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Subbase (mm)</td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>Select Fill (mm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Thickness (mm)</td>
<td>345</td>
<td>445</td>
</tr>
</tbody>
</table>

Notes:
1) A 7mm primer seal should be placed over the base course prior to placement of the asphaltic concrete wearing course.
2) An allowance for subgrade replacement should be anticipated in any areas where poor, wet or saturated subgrade conditions are encountered.
3) The requirement for, and depth and extent of any subgrade replacement / select filling, should be confirmed by the geotechnical authority at the time of construction.
4) Where rock subgrade materials are encountered, the rock should be ripped and re-compacted for a minimum depth of 300mm to break-up preferential drainage paths and provide a dense homogenous surface on which to construct the pavement.
5) Prior to pavement construction, the exposed subgrade should be assessed by the geotechnical authority to confirm the pavement thickness requirement for that section.
6) Wearing course to be a minimum of 3 times the nominal mix size as specified by LMCC.
TABLE 10 – FLEXIBLE PAVEMENT THICKNESS DESIGN SUMMARY

<table>
<thead>
<tr>
<th>Road Classification</th>
<th>Local Road – Primary or Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Section</td>
<td>Weathered Rock Subgrade</td>
</tr>
<tr>
<td>Design Traffic Loading (ESA’s)</td>
<td>4×10^5</td>
</tr>
<tr>
<td>Design Subgrade CBR (%)</td>
<td>8.0</td>
</tr>
<tr>
<td>Wearing Course (mm)</td>
<td>30 – AC10 (Gap Graded)</td>
</tr>
<tr>
<td>Base Course (mm)</td>
<td>150</td>
</tr>
<tr>
<td>Subbase (mm)</td>
<td>150</td>
</tr>
<tr>
<td>Select Fill (mm)</td>
<td>-</td>
</tr>
<tr>
<td>Total Thickness (mm)</td>
<td>330</td>
</tr>
</tbody>
</table>

Notes:

1) A 7mm primer seal should be placed over the base course prior to placement of the asphaltic concrete wearing course.

2) An allowance for subgrade replacement should be anticipated in any areas where poor, wet or saturated subgrade conditions are encountered. As specified by LMCC, ‘Where such situations arise, a minimum of 300mm thick select layer shall be provided in addition to the recommended pavement thickness included in Table 10’.

3) The requirement for, and depth and extent of any subgrade replacement / select filling, should be confirmed by the geotechnical authority at the time of construction.

4) Where rock subgrade materials are encountered, the rock should be ripped and re-compacted for a minimum depth of 300mm to break-up preferential drainage paths and provide a dense homogenous surface on which to construct the pavement.

5) Prior to pavement construction, the exposed subgrade should be assessed by the geotechnical authority to confirm the pavement thickness requirement for that section.

6) Wearing course to be a minimum of 3 times the nominal mix size as specified by LMCC.

A select fill or bridging layer should be allowed for beneath the pavement in any areas where poor, wet or saturated subgrade conditions are encountered. This is discussed in Section 5.4.

If rock subgrade materials are encountered, the rock should be ripped and re-compacted for a minimum depth of 300mm to break-up preferential drainage paths and provide a dense homogenous surface on which to construct the pavement. Pavement thickness designs for a ripped and re-compacted rock subgrade based on a design subgrade CBR of 8% is provided.

It is recommended that each construction length be boxed out to the minimum subgrade level required by the relevant pavement thickness design. Prior to pavement construction, the exposed subgrade should be assessed by the geotechnical authority to confirm the pavement thickness requirement for that section.
Pavement Material Specification and Compaction Requirements are presented in Table 11.

TABLE 11 – PAVEMENT MATERIAL SPECIFICATION AND COMPACTION REQUIREMENTS

<table>
<thead>
<tr>
<th>Pavement Course</th>
<th>Material Specification</th>
<th>Compaction Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wearing Course (AC)</td>
<td>Lake Macquarie City Council Specification</td>
<td>Lake Macquarie City Council Specification</td>
</tr>
<tr>
<td>Base Course</td>
<td>CBR ≥ 80%, PI ≤ 6%</td>
<td>98% Modified (AS1289 5.2.1)</td>
</tr>
<tr>
<td>Subbase</td>
<td>CBR ≥ 30%, PI ≤ 12%</td>
<td>95% Modified (AS1289 5.2.1)</td>
</tr>
<tr>
<td>Select Fill / Stabilised Subgrade</td>
<td>Select, CBR ≥ 15%, PI ≤ 15%, max particle size 75mm Or * Stabilised Subgrade</td>
<td>95% Modified (AS1289 5.2.1)</td>
</tr>
<tr>
<td>Subgrade (top 300mm)</td>
<td>Minimum CBR = 3.5%</td>
<td>100% Standard (AS1289 5.1.1)</td>
</tr>
<tr>
<td>Subgrade / Fill Below</td>
<td>Minimum CBR = 3.5%</td>
<td>95% Standard (AS1289 5.1.1)</td>
</tr>
</tbody>
</table>

Notes:
2) CBR = California Bearing Ratio, PI = Plasticity Index.
3) Select Fill / Stabilised Subgrade options if required and/or adopted will be dependent on subgrade moisture conditions.

5.3 **Excavation Conditions and Depth to Rock**

The depths of fill, topsoil, colluvium, residual soils and weathered rock, together with depths of practical refusal of the 20 tonne excavator where encountered are summarised in Table 2.

In terms of excavation conditions, site materials can generally be divided into:
- Clayey and Granular Soils (Units 1, 2, & 3). It is anticipated that these materials could be excavated by a conventional excavator or backhoe bucket;
- Weathered Rock (Unit 4 & 5). Rippability is dependent on rock strength, depth, degree of weathering and number of defects within the rock mass which can vary significantly.

It is anticipated that the Weathered Rock (Unit 4 & 5) material encountered could be excavated by conventional 20 tonne excavator or equivalent at least to the depths indicated on the appended test pit logs.

It is expected that material below the depth of 20 tonne excavator bucket refusal will be excavatable by ripping to some greater depth, although this has not been assessed as part of the current investigation;

It is recommended that targeted investigations (e.g. cored boreholes) are carried out if significant excavations are proposed where bedrock depth or excavatability is important to design or construction.
The use of toothed buckets, ripping tynes, and/or hydraulic rock hammers may be required if hard bands of weathered rock are encountered or for deep confined excavations such as for service trenches. Higher strength rock or randomly occurring hard bands within the rock mass if encountered, are likely to occur towards the base of deeper cuts.

Preliminary recommendations based on excavation with a 20 tone excavator (noting practical refusal was met at relatively shallow depths) in the area of major cuttings are as follows:

- The majority of the rock is in the medium to high rock strength range, slightly fractured, with variable fracture spacings.
- Based on the findings it would be expected that in a large bulk excavation such as that proposed, where ripping directions can be adjusted readily to optimise ripping direction relative to fracture orientation, the majority of rock would be excavatable by a medium to large dozer such as a Caterpillar D9 or equivalent equipped with a single ripping tyne.
- Isolated beds of high to very high strength rock are likely to be encountered. If these bands are highly fractured, they should still be rippable, but may require additional effort such as impact ripping or a larger dozer.
- It is recommended that an allowance for rock breakers or pre-splitting prior to ripping be made for areas where such hard bands may be encountered.

Groundwater may exist at localised areas of the site such as within the topsoil / colluvium profile, from water perched above the residual clay / bedrock profile, or in areas of former drainage channels. It is possible that slow water inflow may be encountered from such layers, particularly if earthworks are carried out during or following periods of wet weather.

Care should be taken not to disturb or destabilise existing underground services or structures.

5.4 Recommended Batter Slopes

Recommended batter slopes for each inferred geotechnical unit are summarised in Table 12.

<table>
<thead>
<tr>
<th>GEOTECHNICAL UNIT</th>
<th>MATERIAL TYPE</th>
<th>MAXIMUM SLOPE OF EXCAVATED UNSUPPORTED BATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TEMPORARY EXCAVATIONS *</td>
</tr>
<tr>
<td>UNIT 1 & 2</td>
<td>Topsoil & Colluvium</td>
<td>1V:1H</td>
</tr>
<tr>
<td>UNIT 3</td>
<td>Residual Soil</td>
<td>1V:1H</td>
</tr>
<tr>
<td>UNIT 4</td>
<td>Extremely Weathered Rock</td>
<td>1V:0.5H</td>
</tr>
<tr>
<td>UNIT 5</td>
<td>Highly Weathered Rock</td>
<td>1V:0.5H</td>
</tr>
</tbody>
</table>

NOTE: * Subject to inspection during excavation to check for water inflow, adversely orientated defects or other conditions that could affect stability of the slope.

The safe working procedures of Work Cover NSW Excavation work code of practice, dated July 2014 should be followed.
5.5 Retaining Wall Foundation Design Parameters

Retaining walls backfilled with a free draining granular material may be designed for an active earth pressure coefficient (k_a) of 0.33 and a passive earth pressure coefficient (k_p) of 3.0 and a total density of 1.9 t/m3, or alternatively the values shown in Table 13 may be adopted.

Allowance should be made for in the design of retention measures to resist hydrostatic pressures due to groundwater build-up in addition to earth pressures.

The parameters outlined in Table 13 may be used for retaining wall design. It is recommended that the design does not allow for any geotechnical strength for any uncontrolled fill if present.

<table>
<thead>
<tr>
<th>Soil Description</th>
<th>γ (kN/m3)</th>
<th>S_u (kPa)</th>
<th>c' (kPa)</th>
<th>ϕ' (°)</th>
<th>E_v (MPa)</th>
<th>E_h (MPa)</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Fill (cohesive)</td>
<td>19</td>
<td>75</td>
<td>5</td>
<td>27</td>
<td>15</td>
<td>11</td>
<td>0.35</td>
</tr>
<tr>
<td>Residual Soil (very stiff or better)</td>
<td>19</td>
<td>75</td>
<td>5</td>
<td>27</td>
<td>15</td>
<td>11</td>
<td>0.35</td>
</tr>
<tr>
<td>Extremely to Highly Weathered Rock</td>
<td>21</td>
<td>300</td>
<td>5</td>
<td>37</td>
<td>60</td>
<td>45</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Note:

γ = Unit Weight
S_u = Undrained Shear Strength
c' = Effective Cohesion
ϕ' = Effective Friction Angle
E_v = Vertical Young’s Modulus
E_h = Young’s Modulus
ν = Poisson’s Ratio

During progressive placement of fill behind the retaining wall it will displace outwards slightly. It is therefore recommended that the wall have an initial inward slope in the order of 5° prior to placement of fill.

An at rest earth pressure coefficient (k_o) should be used instead of an active earth pressure coefficient (k_a) behind the retaining structures for any walls that are relatively rigid and/or propped such as box culvert structures.

5.6 Site Preparation

Site preparation and earthworks suitable for pavement support and site re-grading should consist of:

- Following any bulk excavation to proposed subgrade level, all areas of proposed pavement construction or site re-grading should be stripped to remove all existing uncontrolled fill, vegetation, topsoil, root affected or other potentially deleterious materials;
- Stripping is generally expected to be required to depths of about 0.1m to 0.3m to remove topsoil and root affected material;
- Additional stripping may be required in any areas where poor, wet or saturated subgrade conditions are encountered;
• Following stripping, the exposed subgrade should be proof rolled (minimum 10 tonne static roller), to identify any wet or excessively deflecting material. Any such areas should be over excavated and backfilled with an approved select material;

• The moisture content of the subgrade materials and therefore the need for moisture conditioning or over-excavation and replacement, will be largely dependent on pre-existing and prevailing weather conditions at the time of construction;

• Subgrade preparation should be carried out using a tracked excavator equipped with a smooth sided (‘gummy’) bucket to minimise the risk of over-disturbance of soils;

• Protect the area after subgrade preparation to maintain moisture content as far as practicable. The placement of subbase gravel would normally provide adequate protection;

• Site preparation should include provision of drainage and erosion control as required, as well as sedimentation control measures.

At the time of the field investigation, moisture content for the clay subgrade material tested varied from 1.4% dry to 4.8% wet of standard Optimum Moisture Content (OMC). It should therefore be anticipated that moisture conditioning of the subgrade may be necessary prior to compaction and placement of pavement materials.

The required time period to prepare the subgrade is likely to be dependent on the prevailing weather conditions at the time of construction.

If over-wet subgrades exist at the time of construction or deleterious materials are encountered at subgrade level, these materials should be over-excavated and be replaced with a minimum depth of 250mm of well graded granular select material with CBR of 15% or greater. The requirement for, and extent of subgrade replacement / select filling, should be confirmed by the geotechnical authority at the time of construction.

5.7 Fill Construction Procedures

Earthworks for pavement construction or support of foundations should consist of the following measures:

• Approved fill beneath pavements should be compacted in layers not exceeding 300mm loose thickness to the compaction requirements provided in Table 11;

• The top 300mm of natural subgrade below pavements or the final 300mm of road subgrade fill should be compacted to provide a subgrade that is within the moisture range of 60% to 90% of Optimum Moisture Content (OMC);

• Site fill beneath structures should be compacted to a minimum density ratio of 98% Standard Compaction within ±2% of OMC in cohesive soils;

• All fill should be supported by properly designed and constructed retaining walls or else battered at 1V:2H or flatter and protected against erosion;

• Where fill is to be placed on slopes in excess of 1V:8H (7°), a prepared surface should be benched or stepped into the natural slope;

• Earthworks should be carried out in accordance with the recommendations outlined in AS3798-2007 ‘Guidelines for Earthworks for Commercial and Residential Developments’.
5.8 Suitability of Site Materials for Re-Use as Fill

The following comments are made with respect to suitability of site materials for re-use as fill:

- Unit 1 Topsoil materials are expected to be suitable for landscaping purposes only;
- Unit 2 Colluvium may be variable and suitability for re-use should be confirmed at the time of construction. These materials will likely require some moisture conditioning;
- Unit 3 Residual Soils are generally expected to be suitable for re-use as general fill for engineering purposes. These materials will likely require some moisture conditioning;
- Unit 4 Extremely Weathered Rock and Unit 5 Highly Weathered Rock are generally expected to be suitable for re-use as general fill for engineering purposes.

Final selection of fill materials should consider properties such as reactivity which is typically moderate for site won Unit 3 Residual Soils, and low to moderate for site won Unit 4 Extremely Weathered Rock and Unit 5 Highly Weathered Rock.

The suitability of material for re-use should be assessed and confirmed by the geotechnical authority at the time of construction.

5.9 Special Construction Requirements and Site Drainage

The enclosed pavement thickness designs assume the provision of adequate surface and subsurface drainage of the pavement and adjacent areas. As a minimum, it is recommended that subsoil drains be installed:

- Along the high side of roads aligned across site slopes;
- Along both sides of roads aligned down slope.

It is recommended that surface and subsoil drainage be installed in line with the above advice, and in accordance with Lake Macquarie City Council (LMCC) specifications.

Adequate surface and subsurface drainage should be installed and connected to the stormwater disposal system.

Inspection should be carried out by a geotechnical authority during construction to confirm the conditions assumed in this report and in the design.
6.0 LIMITATIONS

The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical design practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

The extent of testing associated with this assessment is limited to discrete test pit locations. It should be noted that subsurface conditions between and away from the test pit locations may be different to those observed during the field work and used as the basis of the recommendations contained in this report.

If subsurface conditions encountered during construction differ from those given in this report, further advice should be sought without delay.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact Shannon Kelly or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd.

Jason Lee
Principal Geotechnical Engineer
FIGURE AA1:
Approximate Test Pit Location Plan
LEGEND:

- Approximate Test Pit Location (Qualtest June 2015)
- Approximate Test Pit Location (Cardno Nov 2014)

Drawing based on copy of plan for proposed subdivision provided
APPENDIX A: Results of Field Investigations
MATERIAL DESCRIPTION:

- **TOPSOIL / COLLUVIUM**: Silty Clayey SAND - fine to medium grained, brown, fines of little to low plasticity, with some tree roots.
- **RESIDUAL SOIL**: Sandy CLAY - medium plasticity, pale grey brown, sand fine to coarse grained.
- Becoming Silty Sandy CLAY with rock structure with depth, some ironstone staining.

Hole Terminated at 3.00 m
<table>
<thead>
<tr>
<th>METHOD</th>
<th>WATER</th>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>GRAPHIC LOG</th>
<th>CLASSIFICATION SYMBOL</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Encountered</td>
<td>50.5</td>
<td>0.5</td>
<td>CH</td>
<td></td>
<td>M > w Silty Clayey SAND - fine to medium grained, brown, fines of low plasticity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td>M MD Sandy CLAY - medium to high plasticity, pale grey brown, sand fine to coarse grained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>M > w SANDSTONE - fine to medium grained, red ironstone stained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td>Hole Terminated at 0.70 m Excavator Refusal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.5</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:
- Water Level (Date and time shown)
- Water Inflow
- Water Outflow
- Gradational or transitional strata
- Definitive or distinct strata change

Notes, Samples and Tests
- U_d 50mm Diameter tube sample
- CBR Bulk sample for CBR testing
- ASS Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled)
- B Bulk Sample

Field Tests
- PID Photoliation detector reading (ppm)
- DCP(x-y) Dynamic penetrometer test (test depth interval shown)
- HP Hand Penetrometer test (UCS kPa)

Consistency
- VS Very Soft
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- H Hard

UCS (kPa)
- <25
- 25 - 50
- 50 - 100
- 100 - 200
- 200 - 400
- >400

Density
- V Very Loose
- L Loose
- MD Medium Dense
- D Dense
- VD Very Dense

Moisture Condition
- Dry
- Moist
- Plastic Limit
- Liquid Limit

Density Index
- <15%
- 15 - 35%
- 35 - 65%
- 65 - 85%
- 85 - 100%

ENGINEERING LOG - TEST PIT

CLIENT: MCCLOY GROUP
PROJECT: PROPOSED SUBDIVISION
LOCATION: STAGE 3 & 4 TERALBA
EQUIPMENT TYPE: Volvo ECR235CL 20T Excavator
TEST PIT LENGTH: 2.0 m WIDTH: 0.6 m SURFACE RL: 51.0 m DATUM: Assumed
TEST PIT NO: TP02
DATE: 22/6/15
LOGGED BY: AAC

CLIENT:
MCCLOY GROUP
PROJECT:
PROPOSED SUBDIVISION
LOCATION:
STAGE 3 & 4 TERALBA
EQUIPMENT TYPE:
Volvo ECR235CL 20T Excavator
TEST PIT LENGTH:
2.0 m
WIDTH:
0.6 m
SURFACE RL:
51.0 m
DATUM:
Assumed
TEST PIT NO:
TP02
DATE:
22/6/15
LOGGED BY:
AAC

Drilling and Sampling

<table>
<thead>
<tr>
<th>METHOD</th>
<th>WATER</th>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>GRAPHIC LOG</th>
<th>CLASSIFICATION SYMBOL</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Encountered</td>
<td>50.5</td>
<td>0.5</td>
<td>CH</td>
<td></td>
<td>M > w Silty Clayey SAND - fine to medium grained, brown, fines of low plasticity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td>M MD Sandy CLAY - medium to high plasticity, pale grey brown, sand fine to coarse grained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>M > w SANDSTONE - fine to medium grained, red ironstone stained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td>Hole Terminated at 0.70 m Excavator Refusal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.5</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:
- Water Level (Date and time shown)
- Water Inflow
- Water Outflow
- Gradational or transitional strata
- Definitive or distinct strata change

Notes, Samples and Tests
- U_d 50mm Diameter tube sample
- CBR Bulk sample for CBR testing
- ASS Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled)
- B Bulk Sample

Field Tests
- PID Photoliation detector reading (ppm)
- DCP(x-y) Dynamic penetrometer test (test depth interval shown)
- HP Hand Penetrometer test (UCS kPa)

Consistency
- VS Very Soft
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- H Hard

UCS (kPa)
- <25
- 25 - 50
- 50 - 100
- 100 - 200
- 200 - 400
- >400

Density
- V Very Loose
- L Loose
- MD Medium Dense
- D Dense
- VD Very Dense

Moisture Condition
- Dry
- Moist
- Plastic Limit
- Liquid Limit

Density Index
- <15%
- 15 - 35%
- 35 - 65%
- 65 - 85%
- 85 - 100%
Engineering Log - Test Pit

Client: MCCLOY GROUP
Project: PROPOSED SUBDIVISION
Location: STAGE 3 & 4 TERALBA
Equipment Type: Volvo ECR235CL 20T Excavator
Test Pit Pit No: TP03
Test Pit Length: 2.0 m
Surface RL: 49.5 m
Datum: Assumed
Width: 0.6 m
Logged By: AAC
Date: 22/6/15

Drilling and Sampling

<table>
<thead>
<tr>
<th>METHOD</th>
<th>WATER</th>
<th>SAMPLES</th>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>GRAFIGRAPHIC LOG</th>
<th>CLASSIFICATION SYMBOL</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
<th>MOISTURE CONDITION</th>
<th>CONSISTENCY</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Not Encountered</td>
<td>Silty Clayey SAND - fine to medium grained, fines of low plasticity.</td>
<td>M</td>
<td>MD</td>
<td>TOPSOIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sandy CLAY - medium to high plasticity, pale brown, sand fine to coarse grained.</td>
<td>0.2m</td>
<td>CH</td>
<td>RESIDUAL SOIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SANDSTONE - fine to medium grained, red stained.</td>
<td>D</td>
<td>H</td>
<td>HIGHLY WEATHERED ROCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hole Terminated at 0.45 m Excavator Refusal</td>
<td>0.45m</td>
<td>0.2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consistency

- **UCL:** Consistency
- **UCS (kPa):** Ultimate Stress
- **Moisture Condition:**
 - VS: Very Soft
 - S: Soft
 - F: Firm
 - St: Stiff
 - VSt: Very Stiff
 - H: Hard
 - D: Dry
 - L: Loose
 - MD: Medium Dense
 - D: Dense
 - V: Very Loose
 - MD: Medium Dense
 - D: Dense
 - VD: Very Dense

Notes, Samples and Tests

- UCL: 50mm Diameter tube sample
- CBR: Bulk sample for CBR testing
- Environmental sample
- Acid Sulfate Soil Sample
- Bulk Sample

Field Tests

- PID: Photoionisation detector reading (ppm)
- DCP(x-y): Dynamic penetrometer test (test depth interval shown)
- HP: Hand Penetrometer test (UCS kPa)

Legends

- Water Level (Date and time shown)
- Water Inflow
- Water Outflow
- Graded or transitional strata
- Definitive or distinct strata change
Material Description and Profile Information

TOPSOIL
- Silty Clayey SAND - fine to medium grained, pale brown, low plasticity.

COLLUVIUM
- Sandy CLAY - medium to high plasticity, pale brown, yellow, sand fine to coarse grained.

RESIDUAL SOIL
- Sandy CLAY - medium to high plasticity mottled red/grey, sand fine to coarse grained.

SANDSTONE
- Becoming weathered rock with depth.

Structure and Additional Observations
- Hole Terminated at 2.50 m
- 2.20: Becoming friable with depth

Field Test Results

Test Type
- UCS (kPa)
- Moisture Condition
- Consistency
- Density

Notes, Samples and Tests
- Water Level
- CBR Bulk sample for CBR testing
- Environmental sample
- Acid Sulfate Soil Sample
- Bulk Sample

Density
- V Very Loose
- D Very Dense

Moisture Condition
- D Dry

Consistency
- UCS (kPa)

Water Level
- VS Very Soft
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff
- H Hard

Density Index
- V Loose
- MD Medium Dense
- D Dense
- VD Very Dense

Diagram

- Drill hole with sample locations and test results.

Table

<table>
<thead>
<tr>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>SYMBOL</th>
<th>CLASSIFICATION</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>38.0</td>
<td>SM</td>
<td>Silty Clayey SAND</td>
<td>- fine to medium grained, pale brown, low plasticity.</td>
</tr>
<tr>
<td>0.80m</td>
<td>37.5</td>
<td>CH</td>
<td>Sandy CLAY</td>
<td>- medium to high plasticity, pale brown, yellow, sand fine to coarse grained.</td>
</tr>
<tr>
<td>2.30m</td>
<td>36.0</td>
<td>D</td>
<td>SANDSTONE</td>
<td>- fine to medium grained, grey pale brown, highly weathered.</td>
</tr>
</tbody>
</table>

Notes

- Drilling and sampling methods:
 - Water: Water level, CBR, Environmental sample, Acid Sulfate Soil Sample, Bulk Sample.
- Field tests:
 - Photionisation detector reading (ppm)
 - Dynamic penetrometer test (test depth interval shown)
 - Hand Penetrometer test (UCS kPa).
MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components

Field Test

- **Material:** TOPSOIL
- **Consistency:** M > w
- **Density:** D
- **UCS (kPa):** <25
- **Moisture Condition:** Dry

- **Material:** COLLUVIUM
- **Consistency:** M < w
- **Density:** H
- **UCS (kPa):** 200 - 400
- **Moisture Condition:** Very Stiff

- **Material:** RESIDUAL SOIL
- **Consistency:** St
- **Density:** VSt
- **UCS (kPa):** 100 - 200
- **Moisture Condition:** Stiff

- **Material:** ROCK
- **Consistency:** M < w
- **Density:** VSt
- **UCS (kPa):** >400
- **Moisture Condition:** Very Stiff

Hole Terminated at 1.60 m

Excavator Refusal

Notes, Samples and Tests

- **Water Level:** 50mm Diameter tube sample
- **CBR:** Bulk sample for CBR testing
- **Environmental Sample:** Glass jar, sealed and chilled on site
- **Acid Sulfate Soil Sample:** Plastic bag, air expelled, chilled
- **Bulk Sample:** Water

Consistency

- **Very Soft:** VS
- **Soft:** S
- **Firm:** F
- **Stiff:** St
- **Very Stiff:** VSt

UCS (kPa)

- **Very Loose:** V
- **Loose:** L
- **Medium Dense:** MD
- **Dense:** D
- **Very Dense:** VD

Moisture Condition

- **Dry:** D
- **Moist:** M
- **Wet:** W
- **Plastic Limit:** Wp
- **Liquid Limit:** Wl

Density

- **Very Loose:** V
- **Loose:** L
- **Medium Dense:** MD
- **Dense:** D
- **Very Dense:** VD

Density Index

- **<15%:** Density Index 15 - 35%
- **>15%:** Density Index 35 - 65%
- **>65%:** Density Index 65 - 100%

Legend:

- **Water Level:** 50mm Diameter tube sample
- **CBR:** Bulk sample for CBR testing
- **Environmental Sample:** Glass jar, sealed and chilled on site
- **Acid Sulfate Soil Sample:** Plastic bag, air expelled, chilled
- **Bulk Sample:** Water

Drilling and Sampling

METHOD: WATER

<table>
<thead>
<tr>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>GRADING LOG CLASSIFICATION SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.5</td>
<td>0.5</td>
<td>SM</td>
</tr>
<tr>
<td>28.0</td>
<td>1.0</td>
<td>SM</td>
</tr>
<tr>
<td>27.5</td>
<td>1.5</td>
<td>SM</td>
</tr>
<tr>
<td>27.0</td>
<td>2.0</td>
<td>SM</td>
</tr>
<tr>
<td>26.5</td>
<td>2.5</td>
<td>SM</td>
</tr>
<tr>
<td>26.0</td>
<td>3.0</td>
<td>SM</td>
</tr>
<tr>
<td>25.5</td>
<td>3.5</td>
<td>SM</td>
</tr>
<tr>
<td>0.50m</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>0.80m</td>
<td></td>
<td>E</td>
</tr>
</tbody>
</table>

SAMPLES:

- **Water:** Water Level (Date and time shown)
- **Water Inflow:** Water Outflow

Strata Changes

- **Gradational or transitional strata:**
- **Definitive or distinct strata change:**

Field Tests

- **PID:** Photioniisation detector reading (ppm)
- **DOP(x-y):** Dynamic penetrometer test (test depth interval shown)
- **HP:** Hand Penetrometer test (UCS kPa)
MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components

<table>
<thead>
<tr>
<th>Method</th>
<th>Water Samples</th>
<th>RL (m)</th>
<th>Depth (m)</th>
<th>Classification Symbol</th>
<th>Material Description</th>
<th>Moisture Condition</th>
<th>UCS (kPa)</th>
<th>Density Index</th>
<th>Test Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.40m</td>
<td>0.40m</td>
<td>SM</td>
<td>Silty Clayey SAND - fine to medium grained, pale brown, fines of low plasticity.</td>
<td>M < w<sub>p</sub>, M < w<sub>s</sub></td>
<td>VSI</td>
<td>H < 15</td>
<td>TOPSOIL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.80m</td>
<td>0.80m</td>
<td>CL</td>
<td>Sandy CLAY - low to medium plasticity, pale yellow, grey brown mottles with ironstone staining, sand fine to coarse grained.</td>
<td>M > w<sub>p</sub>, M > w<sub>s</sub></td>
<td></td>
<td></td>
<td>RESIDUAL SOIL</td>
<td></td>
</tr>
</tbody>
</table>

Hole Terminated at 2.20 m

Table:

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Sample Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Level</td>
<td>Date and time shown</td>
<td></td>
</tr>
<tr>
<td>CBR</td>
<td>Bulk sample for CBR testing</td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>Sample</td>
<td></td>
</tr>
<tr>
<td>Acid Sulfate Soil Sample</td>
<td>(Plastic bag, air expelled, chilled)</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:

- Water Level (Date and time shown)
- Water Inflow
- Water Outflow
- Gradational or transitional strata
- Definitive or distinct strata change

Consistency:

- Very Loose
- Loose
- Medium Dense
- Dense
- Very Dense

Moisture Condition:

- Dry
- Moist
- Wet
- Plastic Limit
- Liquid Limit

Density Index:

- <15%
- 15 - 35%
- 35 - 65%
- 65 - 85%
- >85%

Field Tests:

- Photionisation detector reading (ppm)
- Dynamic penetrometer test (test depth interval shown)
- Hand Penetrometer test (UCS kPa)
Material Description and Profile Information

<table>
<thead>
<tr>
<th>RL (m)</th>
<th>Depth (m)</th>
<th>Classification Symbol</th>
<th>Classification</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.20m</td>
<td>SM</td>
<td>Silty Clayey Sand - fine to medium grained, pale brown.</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.30m</td>
<td>SM</td>
<td>Silty Clayey Sand - fine to medium grained, pale grey.</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>0.40m</td>
<td>CI</td>
<td>Sandy Clay - medium plasticity, pale brown yellow, sand fine to coarse grained.</td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>1.20m</td>
<td>CI</td>
<td>Sandy Clay - medium plasticity, grey brown with red ironstone staining, sand fine to medium grained.</td>
<td></td>
</tr>
<tr>
<td>1.40</td>
<td>1.50m</td>
<td>CI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole Terminated at 2.40 m

Field Test

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPSOIL</td>
<td>M MD</td>
</tr>
<tr>
<td>COLLODUM</td>
<td>T</td>
</tr>
<tr>
<td>RESIDUAL SOIL</td>
<td>T</td>
</tr>
</tbody>
</table>

CONSISTENCY

<table>
<thead>
<tr>
<th>Plastic Limit</th>
<th>Moisture Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M > w_p</td>
<td>Wet</td>
</tr>
<tr>
<td>M < w_p</td>
<td>Plastic Limit</td>
</tr>
<tr>
<td>M < w</td>
<td>Liquid Limit</td>
</tr>
<tr>
<td>M > w</td>
<td>Dry</td>
</tr>
</tbody>
</table>

DENSITY

<table>
<thead>
<tr>
<th>Very Loose</th>
<th>Loose</th>
<th>Medium Dense</th>
<th>Dense</th>
<th>Very Dense</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>L</td>
<td>MD</td>
<td>D</td>
<td>VD</td>
</tr>
</tbody>
</table>

Notes, Samples and Tests

- **Water Level**
 - 50mm Diameter tube sample
 - Environmental sample (Glass jar, seated and chilled on site)
 - Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled)
 - Bulk Sample

- **Field Tests**
 - Photionisation detector reading (ppm)
 - Dynamic Penetrometer test (test depth interval shown)
 - Hand Penetrometer test (UCS kPa)
Drilling and Sampling

<table>
<thead>
<tr>
<th>METHOD</th>
<th>WATER</th>
<th>SAMPLES</th>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>GRAPHIC LOG</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
<th>MOISTURE CONDITION</th>
<th>CONSISTENCY</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.40m</td>
<td>D</td>
<td>0.70m</td>
<td>32.5</td>
<td>CI</td>
<td>Silty Clayey SAND - fine to medium grained, pale brown.</td>
<td>M</td>
<td>MD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.0</td>
<td></td>
<td>Silty Clayey SAND - fine to medium grained, pale grey.</td>
<td>C</td>
<td>VS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.5</td>
<td></td>
<td>Sandy CLAY - medium plasticity, pale brown, sand fine to coarse grained.</td>
<td>M < W</td>
<td>VSt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.0</td>
<td></td>
<td>SANDSTONE - fine to medium grained, pale brown, extremely to highly weathered.</td>
<td>D</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.5</td>
<td></td>
<td>Hole Terminated at 1.90 m Very slow excavation. Practical refusal of excavator</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engineering Log - Test Pit

Location: Stage 3 & 4 Teralba

Client: MCCLOY GROUP

Project: Proposed Subdivision

Equipment Type: Volvo ECR235CL 20T Excavator

Surface RL: 35.0 m

Test Pit Length: 2.0 m

Width: 0.6 m

Datum: Assumed

Drilling and Sampling

<table>
<thead>
<tr>
<th>Method</th>
<th>Water Samples</th>
<th>RL (m)</th>
<th>Depth (m)</th>
<th>Graphic Log</th>
<th>Classification Symbol</th>
<th>Material Description: Soil type, plasticity/particle characteristics, colour, minor components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.40m</td>
<td>0.0m</td>
<td>SM</td>
<td></td>
<td>Silty Clayey SAND - fine to medium grained, pale brown, pale grey, fines of low plasticity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.70m</td>
<td>0.0m</td>
<td>U50</td>
<td></td>
<td>Sandy CLAY - medium to high plasticity, pale brown, sand fine to medium grained.</td>
</tr>
</tbody>
</table>

- **Not Encountered**

Field Test

<table>
<thead>
<tr>
<th>Consistency</th>
<th>UCS (kPa)</th>
<th>Moisture Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS</td>
<td>Very Soft</td>
<td><25</td>
</tr>
<tr>
<td>S</td>
<td>Soft</td>
<td>25 - 50</td>
</tr>
<tr>
<td>F</td>
<td>Firm</td>
<td>50 - 100</td>
</tr>
<tr>
<td>St</td>
<td>Stiff</td>
<td>100 - 200</td>
</tr>
<tr>
<td>VSt</td>
<td>Very Stiff</td>
<td>200 - 400</td>
</tr>
<tr>
<td>H</td>
<td>Hard</td>
<td>>400</td>
</tr>
</tbody>
</table>

- **Field Tests**
 - **Density**
 - V: Very Loose
 - L: Loose
 - MD: Medium Dense
 - D: Dense
 - VD: Very Dense

- **Density Index**
 - <15%
 - 15 - 35%
 - 35 - 65%
 - 65 - 85%
 - 85 - 100%

- **Consistency**
 - Water: Water Level (Date and time shown)
 - Water Inflow
 - Water Outflow
 - Gradational or transitional strata
 - Definitive or distinct strata change

- **Notes, Samples and Tests**
 - 50mm Diameter tube sample
 - Bulk sample for CBR testing (Glass jar, sealed and chilled on site)
 - Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled)
 - Bulk Sample

- **Hole Terminated at 2.00 m**
MATERIAL DESCRIPTION:

Soil type, plasticity/particle characteristics, colour, minor components

Field Test

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Test Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>TOPSOIL</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>COLLODIAUM</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>RESIDUAL SOIL</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>Hole Terminated at 2.00 m</td>
<td></td>
</tr>
</tbody>
</table>

Consistency

<table>
<thead>
<tr>
<th>Consistency</th>
<th>UCS (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS Very Soft</td>
<td><25</td>
</tr>
<tr>
<td>S Soft</td>
<td>25 - 50</td>
</tr>
<tr>
<td>F Firm</td>
<td>50 - 100</td>
</tr>
<tr>
<td>St Stiff</td>
<td>100 - 200</td>
</tr>
<tr>
<td>VS Stiff</td>
<td>200 - 400</td>
</tr>
<tr>
<td>H Hard</td>
<td>>400</td>
</tr>
</tbody>
</table>

Moisture Condition

<table>
<thead>
<tr>
<th>Moisture Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Dry</td>
</tr>
<tr>
<td>M Moist</td>
</tr>
<tr>
<td>W Wet</td>
</tr>
<tr>
<td>Wp Plastic Limit</td>
</tr>
<tr>
<td>Wl Liquid Limit</td>
</tr>
</tbody>
</table>

Density

<table>
<thead>
<tr>
<th>Density</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Very Loose</td>
<td></td>
</tr>
<tr>
<td>L Loose</td>
<td></td>
</tr>
<tr>
<td>MD Medium Dense</td>
<td></td>
</tr>
<tr>
<td>D Dense</td>
<td></td>
</tr>
<tr>
<td>VD Very Dense</td>
<td></td>
</tr>
</tbody>
</table>

Notes, Samples and Tests

<table>
<thead>
<tr>
<th>Sample</th>
<th>Test Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2</td>
<td>CBR</td>
<td>Bulk sample for CBR testing</td>
</tr>
<tr>
<td>E</td>
<td>Environmental sample</td>
<td>(Glass jar, sealed and chilled on site)</td>
</tr>
<tr>
<td>ASS</td>
<td>Acid Sulfate Soil Sample</td>
<td>(Plastic bag, air expelled, chilled)</td>
</tr>
<tr>
<td>B</td>
<td>Bulk Sample</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:

- Water Level (Date and time shown)
- Water Inflow
- Water Outflow
- Gradational or transitional strata
- Definitive or distinct strata change

Structure and additional observations

- TOPSOIL
- COLLODIAUM
- RESIDUAL SOIL

Density

<table>
<thead>
<tr>
<th>Density</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Very Loose</td>
<td></td>
</tr>
<tr>
<td>L Loose</td>
<td></td>
</tr>
<tr>
<td>MD Medium Dense</td>
<td></td>
</tr>
<tr>
<td>D Dense</td>
<td></td>
</tr>
<tr>
<td>VD Very Dense</td>
<td></td>
</tr>
</tbody>
</table>

Moisture Condition

<table>
<thead>
<tr>
<th>Moisture Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Dry</td>
</tr>
<tr>
<td>M Moist</td>
</tr>
<tr>
<td>W Wet</td>
</tr>
<tr>
<td>Wp Plastic Limit</td>
</tr>
<tr>
<td>Wl Liquid Limit</td>
</tr>
</tbody>
</table>

Density

<table>
<thead>
<tr>
<th>Density</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Very Loose</td>
<td></td>
</tr>
<tr>
<td>L Loose</td>
<td></td>
</tr>
<tr>
<td>MD Medium Dense</td>
<td></td>
</tr>
<tr>
<td>D Dense</td>
<td></td>
</tr>
<tr>
<td>VD Very Dense</td>
<td></td>
</tr>
</tbody>
</table>

Moisture Condition

<table>
<thead>
<tr>
<th>Moisture Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Dry</td>
</tr>
<tr>
<td>M Moist</td>
</tr>
<tr>
<td>W Wet</td>
</tr>
<tr>
<td>Wp Plastic Limit</td>
</tr>
<tr>
<td>Wl Liquid Limit</td>
</tr>
</tbody>
</table>

Density

<table>
<thead>
<tr>
<th>Density</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Very Loose</td>
<td></td>
</tr>
<tr>
<td>L Loose</td>
<td></td>
</tr>
<tr>
<td>MD Medium Dense</td>
<td></td>
</tr>
<tr>
<td>D Dense</td>
<td></td>
</tr>
<tr>
<td>VD Very Dense</td>
<td></td>
</tr>
</tbody>
</table>

Moisture Condition

<table>
<thead>
<tr>
<th>Moisture Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Dry</td>
</tr>
<tr>
<td>M Moist</td>
</tr>
<tr>
<td>W Wet</td>
</tr>
<tr>
<td>Wp Plastic Limit</td>
</tr>
<tr>
<td>Wl Liquid Limit</td>
</tr>
</tbody>
</table>
MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components

CONSISTENCY
- Very Loose: Density Index < 15%
- Loose: Density Index 15 - 35%
- Medium Dense: Density Index 35 - 65%
- Dense: Density Index 65 - 85%
- Very Dense: Density Index > 85%

Density
- V: Very Loose
- L: Loose
- MD: Medium Dense
- D: Dense
- VD: Very Dense

CONSISTENCY DENSITY
- M: Moist
- W: Wet
- S: Stiff
- VS: Very Stiff
ENGINEERING LOG - TEST PIT

CLIENT: MCCLOY GROUP
PROJECT: PROPOSED SUBDIVISION

LOCATION: STAGE 3 & 4 TERALBA

EQUIPMENT TYPE: Volvo ECR235CL 20T Excavator
TEST PIT LENGTH: 2.0 m
WIDTH: 0.6 m
SURFACE RL: 29.5 m

Drilling and Sampling

<table>
<thead>
<tr>
<th>METHOD</th>
<th>WATER</th>
<th>SAMPLES</th>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty Clayey SAND - fine to medium grained, pale brown, fines of low plasticity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28.5</td>
<td>1.0</td>
<td>Silty Clayey SAND - fine to medium grained, pale grey, fines of low plasticity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28.0</td>
<td>1.5</td>
<td>Sandy CLAY - medium to high plasticity, sand fine to medium grained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.5</td>
<td>2.0</td>
<td>Some ironstone inclusions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.0</td>
<td>2.5</td>
<td>SANDSTONE / SILTSTONE - fine to medium grained, pale grey brown, highly weathered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.5</td>
<td>3.0</td>
<td>Hole Terminated at 2.20 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes, Samples and Tests

<table>
<thead>
<tr>
<th>Consistency</th>
<th>UCS (kPa)</th>
<th>Moisture Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS</td>
<td>Very Soft</td>
<td><25</td>
</tr>
<tr>
<td>S</td>
<td>Soft</td>
<td>25 - 50</td>
</tr>
<tr>
<td>F</td>
<td>Firm</td>
<td>50 - 100</td>
</tr>
<tr>
<td>St</td>
<td>Stiff</td>
<td>100 - 200</td>
</tr>
<tr>
<td>VSt</td>
<td>Very Stiff</td>
<td>200 - 400</td>
</tr>
<tr>
<td>H</td>
<td>Hard</td>
<td>>400</td>
</tr>
<tr>
<td>Fb</td>
<td>Fines</td>
<td></td>
</tr>
</tbody>
</table>

Density

<table>
<thead>
<tr>
<th>Density</th>
<th>Notes, Samples and Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Very Loose</td>
</tr>
<tr>
<td>L</td>
<td>Loose</td>
</tr>
<tr>
<td>MD</td>
<td>Medium Dense</td>
</tr>
<tr>
<td>D</td>
<td>Dense</td>
</tr>
<tr>
<td>VD</td>
<td>Very Dense</td>
</tr>
</tbody>
</table>

LEGEND:

- **W**: Water Level (Date and time shown)
- **E**: Environmental sample (Glass jar, sealed and chilled on site)
- **ASS**: Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled)
- **B**: Bulk Sample
- **Water Inflow**
- **Water Outflow**
- **Graded or transitional strata**
- **Definitive or distinct strata change**
- **PI**
- **DOP**(x-y)**: Dynamic penetrometer test (test depth interval shown)
- **HP**: Hand Penetrometer test (UCS kPa)

Structure and additional observations

- **1.50**: Becoming stiffer with depth and developing rock structure.
- **TOPSOIL**
- **COLLUVIUM**
- **RESIDUAL SOIL**
- **HIGHLY WEATHERED ROCK**
ENGINEERING LOG - TEST PIT

CLIENT: MCCLOY GROUP
PROJECT: PROPOSED SUBDIVISION
LOCATION: STAGE 3 & 4 TERALBA
DATE: 22/6/15

EQUIPMENT TYPE: Volvo ECR235CL 20T Excavator
SURFACE RL: 26.5 m
TEST PIT LENGTH: 2.0 m
WIDTH: 0.6 m
DATUM: Assumed

Drilling and Sampling

<table>
<thead>
<tr>
<th>METHOD</th>
<th>WATER</th>
<th>SAMPLES</th>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>GRAPHIC LOG</th>
<th>CLASSIFICATION SYMBOL</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOPSOIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.40m</td>
<td></td>
<td></td>
<td>SM</td>
<td>Silty Clayey SAND - fine to medium grained, pale brown, fines of low plasticity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.70m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.10m</td>
<td></td>
<td></td>
<td>CI</td>
<td>Sandy CLAY - medium plasticity, pale brown, sand fine to medium grained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.80m</td>
<td></td>
<td></td>
<td>SM</td>
<td>Silty Clayey SAND - fine to medium grained, pale grey, fines of low plasticity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.10m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not Encountered

Hole Terminated at 2.10 m

Field Test

Notes, Samples and Tests

- **U**₅₀: 50mm Diameter tube sample
- **CBR**: Bulk sample for CBR testing
- **E**: Environmental sample
- **ASS**: Acid Sulfate Soil Sample
- **B**: Bulk Sample

Strata Changes

- Gradational or transitional strata
- Definitive or distinct strata change

Field Tests

- **PID**: Photoionisation detector reading (ppm)
- **DCP(x-y)**: Dynamic penetrometer test (test depth interval shown)
- **HP**: Hand Penetrometer test (UCS kPa)

Legend:

- **Water Level**
- **Water Inflow**
- **Water Outflow**

Consistency and UCS

<table>
<thead>
<tr>
<th>Consistency</th>
<th>UCS (kPa)</th>
<th>Moisture Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS</td>
<td>Very Soft</td>
<td><25</td>
</tr>
<tr>
<td>S</td>
<td>Soft</td>
<td>25 - 50</td>
</tr>
<tr>
<td>F</td>
<td>Firm</td>
<td>50 - 100</td>
</tr>
<tr>
<td>St</td>
<td>Stiff</td>
<td>100 - 200</td>
</tr>
<tr>
<td>VSt</td>
<td>Very Stiff</td>
<td>200 - 400</td>
</tr>
<tr>
<td>H</td>
<td>Hard</td>
<td>>400</td>
</tr>
</tbody>
</table>

Density

- **V**: Very Loose
- **L**: Loose
- **MD**: Medium Dense
- **D**: Dense
- **VD**: Very Dense

Moisture Condition

- **W**: Wet
- **W_p**: Plastic Limit
- **W_L**: Liquid Limit

Densities

- **Density Index <15%**:
- **Density Index 15 - 35%**:
- **Density Index 35 - 65%**:
- **Density Index 65 - 85%**:
- **Density Index 85 - 100%**:

When reading the natural text, please refer to the table and graph for detailed information on soil types, plasticity, particle characteristics, colour, minor components, and other relevant data.
Engineering Log - Test Pit

Client: MCCLOY GROUP
Project: PROPOSED SUBDIVISION
Location: STAGE 3 & 4 TERALBA
Test Pit No: TP14
Logged By: AAC
Date: 22/6/15

Equipment Type: Volvo ECR235CL 20T Excavator
Surface RL: 22.0 m
Test Pit Length: 2.0 m
Width: 0.6 m
Datum: Assumed

<table>
<thead>
<tr>
<th>METHOD</th>
<th>WATER SAMPLES</th>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>GRAPHIC LOG</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
<th>MOISTURE CONDITION</th>
<th>CONSISTENCY SYMBOL</th>
<th>DENSITY</th>
<th>CONSISTENCY</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOPSOIL / COLLUVIUM: Silty Clayey SAND - fine to medium grained, pale brown.</td>
<td>M</td>
<td>MD</td>
<td>P</td>
<td>M > W</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.40m</td>
<td>0.5m</td>
<td></td>
<td>RESIDUAL SOIL: Sandy CLAY - medium plasticity, pale brown, sand fine to medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.60m</td>
<td></td>
<td></td>
<td>Terminated at 2.10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.10m</td>
<td></td>
<td></td>
<td>Becoming mottled red grey with depth with ironstone lenses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes, Samples and Tests

- **U**₅₀: 50mm Diameter tube sample
- **CBR**: Bulk sample for CBR testing
- **E**: Environmental sample
- **ASS**: Acid Sulfate Soil Sample
- **B**: Bulk Sample

Consistency

- **VS**: Very Soft
- **S**: Soft
- **F**: Firm
- **St**: Stiff
- **VSt**: Very Stiff
- **H**: Hard

U₅₀ kPa

- **D**: Dry
- **M**: Moist
- **W**: Wet
- **W_i**: Plastic Limit
- **W_L**: Liquid Limit

Density

- **V**: Very Loose
- **L**: Loose
- **MD**: Medium Dense
- **D**: Dense
- **VD**: Very Dense

Notes:

- **PID**: Photoionisation detector reading (ppm)
- **DOP(x-y)**: Dynamic penetrometer test (test depth interval shown)
- **HP**: Hand Penetrometer test (U**<sub>50** kPa)

Samples:

- Water Level (Date and time shown)
- Water Inflow
- Water Outflow

Strata Changes:

- Gradational or transitional strata
- Definitive or distinct strata change
ENGINEERING LOG - TEST PIT

CLIENT: MCCLOY GROUP
PROJECT: PROPOSED SUBDIVISION
LOCATION: STAGE 3 & 4 TERALBA
DATE: 22/6/15

EQUIPMENT TYPE: Volvo ECR235CL 20T Excavator
SURFACE RL: 23.5 m
TEST PIT LENGTH: 2.0 m
WIDTH: 0.6 m
USD RL: Assumed

Notes, Samples and Tests

- **Water Level (Date and time shown)**
- **Water Inflow**
- **Water Outflow**
- **Graded or transitional strata**
- **Definite or distinct strata change**

Field Tests

- **PID** Photoniisation detector reading (ppm)
- **DOP(x-y)** Dynamic penetrometer test (test depth interval shown)
- **HP** Hand Penetrometer test (UCS kPa)

Material description and profile information

- **MATERIAL DESCRIPTION:** Soil type, plasticity/particle characteristics, colour, minor components

<table>
<thead>
<tr>
<th>METHOD</th>
<th>WATER</th>
<th>SAMPLES</th>
<th>RL (m)</th>
<th>DEPTH (m)</th>
<th>GRAPHIC LOG</th>
<th>CLASSIFICATION SYMBOL</th>
<th>MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics, colour, minor components</th>
<th>MOISTURE CONDITION</th>
<th>CONSISTENCY</th>
<th>DENSITY</th>
<th>CONSISTENCY</th>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td>U50</td>
<td>0.40m</td>
<td>23.0</td>
<td>SM</td>
<td>0.1m</td>
<td>Silty Clayey SAND - fine to medium grained, pale brown, fines of low plasticity</td>
<td>Dry</td>
<td>MD</td>
<td>D</td>
<td>Dry</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>U50</td>
<td>0.70m</td>
<td>22.5</td>
<td>SM</td>
<td>0.3m</td>
<td>Silty Clayey SAND - fine to medium grained, pale grey, fines of low plasticity</td>
<td>Moist</td>
<td>M</td>
<td>D</td>
<td>Moist</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>U50</td>
<td>1.05m</td>
<td>22.0</td>
<td>CI</td>
<td></td>
<td>Sandy CLAY - medium plasticity, pale brown, sand fine to medium grained</td>
<td>Wet</td>
<td>M < W</td>
<td>D</td>
<td>Wet</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>U50</td>
<td>1.15m</td>
<td>21.5</td>
<td>SC</td>
<td></td>
<td>Clayey SAND - fine to coarse grained, pale grey brown, fines of low plasticity</td>
<td>Wet</td>
<td>VSI</td>
<td>D</td>
<td>Plastic</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>21.0</td>
<td></td>
<td></td>
<td>SANDSTONE - fine to medium grained, pale brown, highly weathered</td>
<td>Wet</td>
<td></td>
<td>D</td>
<td>Wet</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>20.5</td>
<td></td>
<td></td>
<td>Hole Terminated at 1.60 m Excavator Refusal</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

LEGEND:

- **Water**
- **Consistency**
- **Density**

- **VC** Very Loose
- **Loose**
- **VS** Very Soft
- **Soft**
- **M** Moist
- **F** Firm
- **Stiff**
- **Stiff**
- **W** Wet
- **Plastic Limit**
- **Wp** Plastic Limit
- **Wl** Liquid Limit
- **H** Hard
- **Fb** Fines
- **Density Index**

- **UCS (kPa):**
 - VS Very Soft: <25
 - S Soft: 25 - 50
 - F Firm: 50 - 100
 - Stiff: 100 - 200
 - Very Stiff: 200 - 400
 - Hard: >400
 - Fines
 - Density Index

- **Moisture Condition:**
 - Dry
 - Moist
 - Wet
 - Plastic Limit
 - Liquid Limit

- **Density Index:**
 - <15%
 - 15 - 36%
 - 36 - 65%
 - 65 - 85%
 - 85 - 100%
Engineering Log - Test Pit

Client: MCCLOY GROUP
Project: PROPOSED SUBDIVISION
Location: STAGE 3 & 4 TERALBA

Equipment Type: Volvo ECR235CL 20T Excavator
Surface RL: 39.0 m
Test Pit Length: 2.0 m
Width: 0.6 m
Datum: Assumed
Date: 22/6/15

Drilling and Sampling

<table>
<thead>
<tr>
<th>Method</th>
<th>Water Samples</th>
<th>RL (m)</th>
<th>Depth (m)</th>
<th>Graphic Log</th>
<th>Classification Symbol</th>
<th>Material Description: Soil type, plasticity/particle characteristics, colour, minor components</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Not Encountered</td>
<td></td>
<td>38.5</td>
<td>0.5</td>
<td>SM</td>
<td>M MD</td>
<td>Silty Clayey SAND - low plasticity, pale brown.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.0</td>
<td>1.0</td>
<td>CI</td>
<td>M < Wp</td>
<td>Sandy CLAY - medium plasticity, pale grey brown, sand fine to coarse grained, with some fine to medium grained gravel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.5</td>
<td>1.5</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.5</td>
<td>2.5</td>
<td></td>
<td>D H</td>
<td>SANDSTONE - fine to medium grained, red, highly weathered. Hole Terminated at 0.60 m Excavator Refusal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.5</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSISTENCY

- **Test Type**: UCS (kPa)
- **Consistency**: Moisture Condition
- **Density**: Field Test
- **Density Index**

LEGEND:

- **Water**: Water Level (Date and time shown)
- **Water Inflow**: Water Outflow
- **Strata Changes**: Gradational or transitional strata
- **Definitive or Distinct Strata Change**: Rotation change

Notes, Samples and Tests

- **U₅₀**: 50mm Diameter tube sample
- **CIR**: Bulk sample for CBR testing
- **E**: Environmental sample (Glass jar, sealed and chilled on site)
- **ASS**: Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled)
- **B**: Bulk Sample
- **Field Tests**:
 - **PID**: Photoionisation detector reading (ppm)
 - **DOP(x-y)**: Dynamic penetrometer test (test depth interval shown)
 - **HP**: Hand Penetrometer test (UCS kPa)

Consistency

- **UCS (kPa)**
- **Consistency**: Moisture Condition
- **Density**: Field Test
- **Density Index**

Density

- **V**: Very Loose
- **L**: Loose
- **MD**: Medium Dense
- **D**: Dense
- **VD**: Very Dense

Moisture Condition

- **VS**: Very Soft
- **S**: Soft
- **F**: Firm
- **St**: Stiff
- **VSt**: Very Stiff
- **H**: Hard
- **Fb**: F��nally

- **W**: Wet
- **W_p**: Plastic Limit
- **W_c**: Liquid Limit

- **Density Index**: 15 - 35%
- **Density Index**: 65 - 85%
- **Density Index**: 85 - 100%

Engineer Log - Test Pit

Test Pit No: TP16
Test Pit No: NEW15P-0070
Logged By: AAC
Date: 22/6/15
Engineering Log - Test Pit

Client: MCCLOY GROUP
Project: PROPOSED SUBDIVISION

Location: STAGE 3 & 4 TERALBA

Equipment Type: Volvo ECR235CL 20T Excavator

Test Pit Length: 2.0 m
Width: 0.6 m
Datum: Assumed

Drilling and Sampling

<table>
<thead>
<tr>
<th>Method</th>
<th>Water Samples</th>
<th>RL (m)</th>
<th>Depth (m)</th>
<th>Graphic Log</th>
<th>Classification Symbol</th>
<th>Material Description</th>
<th>Moisture Condition</th>
<th>Consistency</th>
<th>Density</th>
<th>Notes, Samples and Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.40m</td>
<td></td>
<td>D</td>
<td>Cl</td>
<td>Sandy Clayey Sand - fine to medium grained, pale brown, sand fine to medium grained.</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.80m</td>
<td></td>
<td>E</td>
<td></td>
<td>Silty Sandy Clay - low to medium plasticity, black, sand fine to medium grained. (Carbonaceous Siltstone).</td>
<td>M < w, M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Test

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topsoil</td>
<td></td>
</tr>
<tr>
<td>Colluvium</td>
<td></td>
</tr>
<tr>
<td>Residual Soil</td>
<td></td>
</tr>
<tr>
<td>Extremely Weathered Rock</td>
<td></td>
</tr>
<tr>
<td>Highly Weathered Rock</td>
<td></td>
</tr>
</tbody>
</table>

Notes, Samples and Tests

- **U1 (um):** 50mm Diameter tube sample
- **CIR:** Bulk sample for CBR testing
- **E:** Environmental sample (Glass jar, sealed and chilled on site)
- **ASS:** Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled)
- **B:** Bulk Sample

Consistency

- **VS:** Very Soft
- **S:** Soft
- **F:** Firm
- **St:** Stiff
- **St:** Very Stiff
- **H:** Hard

Moisture Condition

- **D:** Dry
- **M:** Moist
- **W:** Wet
- **Wp:** Plastic Limit
- **Wt:** Liquid Limit

Density

- **V:** Very Loose
- **L:** Loose
- **MD:** Medium Dense
- **D:** Dense
- **VD:** Very Dense

UCS (kPa)

- VS: Very Soft <25
- S: Soft 25 - 50
- F: Firm 50 - 100
- St: Stiff 100 - 200
- St: Very Stiff 200 - 400
- H: Hard >400

Field Tests

- **PID:** Photoionisation detector reading (ppm)
- **DOP(x-y):** Dynamic Penetrometer test (test depth interval shown)
- **HP:** Hand Penetrometer test (UCS kPa)

Hole Terminated at 2.20 m
Engineering Log - Test Pit

Client: MCCLOY GROUP
Project: PROPOSED SUBDIVISION
Location: STAGE 3 & 4 TERALBA
Test Pit No.: TP18

<table>
<thead>
<tr>
<th>Surface RL: 20.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum: Assumed</td>
</tr>
</tbody>
</table>

Equipment Type:
Volvo ECR235CL 20T Excavator

Test Pit Length:
2.0 m

Width:
0.6 m

Drilling and Sampling

<table>
<thead>
<tr>
<th>Method</th>
<th>Water</th>
<th>Samples</th>
<th>RL (m)</th>
<th>Depth (m)</th>
<th>Diagram</th>
<th>Classification Symbol</th>
<th>Material Description</th>
<th>Moisture Condition</th>
<th>Consistency</th>
<th>UCS (kPa)</th>
<th>Notes, Samples and Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WATER</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td>SM</td>
<td>Silty Clayey SAND - fine to coarse grained, pale brown, fines of low plasticity, some organics.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>50mm Diameter tube sample</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0.40m</td>
<td></td>
<td>0.5</td>
<td></td>
<td>SM</td>
<td>Silty Clayey SAND - fine to coarse grained, pale grey, fines of low plasticity.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>Bulk sample for CBR testing</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td>0.70m</td>
<td>0.5</td>
<td></td>
<td>SM</td>
<td>Sandy CLAY - medium plasticity, pale grey brown, sand fine to medium grained, with some fine to medium grained gravel.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>Environmental sample (Glass jar, sealed and chilled on site)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>US0</td>
<td></td>
<td>0.5</td>
<td></td>
<td>CI</td>
<td>Becoming pale grey brown with depth.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td>GC</td>
<td>Clayey Sandy GRAVEL - fine to coarse grained, pale brown yellow.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>Bulk Sample</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td>GC</td>
<td>Sand fine to coarse grained, pale brown yellow.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>Bulk Sample</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td>GC</td>
<td>Sand fine to coarse grained, pale brown yellow.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>Bulk Sample</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>GC</td>
<td>Sand fine to coarse grained, pale brown yellow.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>BULK SAMPLE</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td>GC</td>
<td>Sand fine to coarse grained, pale brown yellow.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>BULK SAMPLE</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td>GC</td>
<td>Sand fine to coarse grained, pale brown yellow.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>BULK SAMPLE</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
<td>GC</td>
<td>Sand fine to coarse grained, pale brown yellow.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>BULK SAMPLE</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
<td>GC</td>
<td>Sand fine to coarse grained, pale brown yellow.</td>
<td>MD < w</td>
<td>M</td>
<td>VSI</td>
<td>BULK SAMPLE</td>
</tr>
</tbody>
</table>

Notes, Samples and Tests

- **U**: 50mm Diameter tube sample
- **CBR**: Bulk sample for CBR testing
- **E**: Environmental sample
- **ASS**: Acid Sulfate Soil Sample
- **B**: Bulk Sample

Field Tests

- **PID**: Photoionisation detector reading (ppm)
- **DOP(x-y)**: Dynamic penetrometer test (test depth interval shown)
- **HP**: Hand Penetrometer test (UCS kPa)

Consistency

- **VS**: Very Soft
- **S**: Soft
- **F**: Firm
- **St**: Stiff
- **VSt**: Very Stiff
- **H**: Hard

Moisture Condition

- **D**: Dry
- **M**: Moist
- **W**: Wet
- **Wp**: Plastic Limit
- **Wt**: Liquid Limit

Density

- **V**: Very Loose
- **L**: Loose
- **MD**: Medium Dense
- **D**: Dense
- **VD**: Very Dense

Depth Terminations

- Hole Terminated at 2.20 m

Structure and Additional Observations

- **TOPSOIL**
- **COLLUVIUM**
- **RESIDUAL SOIL**
- **EXTREMELY WEATHERED CONGLOMERATE**
APPENDIX B:
Results of Laboratory Testing
California Bearing Ratio Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Principal:

Sample Details
Sample ID: NEW15W-1297--S01
Client ID:
Date Sampled: 22/06/2015
Sampling Method: AS1289.1.2.1 cl 6.5.4
Specification: No Specification
Source: On-Site
Location: TP4 - (0.4 - 0.6m)
Material: Sandy Clay
Date Tested: 30/06/2015

Test Results

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR At 2.5mm (%)</td>
<td>4.0</td>
</tr>
<tr>
<td>Maximum Dry Density (t/m³)</td>
<td>1.55</td>
</tr>
<tr>
<td>Optimum Moisture Content (%)</td>
<td>23.5</td>
</tr>
<tr>
<td>Dry Density before Soaking (t/m³)</td>
<td>1.54</td>
</tr>
<tr>
<td>Density Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Moisture Content before Soaking (%)</td>
<td>23.5</td>
</tr>
<tr>
<td>Moisture Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Dry Density after Soaking (t/m³)</td>
<td>1.50</td>
</tr>
<tr>
<td>Density Ratio after Soaking (%)</td>
<td>97</td>
</tr>
<tr>
<td>Swell (%)</td>
<td>2.5</td>
</tr>
<tr>
<td>Moisture Content of Top 30mm (%)</td>
<td>34.1</td>
</tr>
<tr>
<td>Moisture Content of Remaining Depth (%)</td>
<td>27.6</td>
</tr>
<tr>
<td>Compactive Effort:</td>
<td>Standard</td>
</tr>
<tr>
<td>Surcharge Mass (kg):</td>
<td>9.00</td>
</tr>
<tr>
<td>Period of Soaking (Days):</td>
<td>4</td>
</tr>
<tr>
<td>Oversize Material (%)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Moisture Content Method Performed as Per AS1289.2.1.1.
California Bearing Ratio Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Principal:
Project No.: NEW15P-0070
Project Name: Proposed Subdivision - Stage 3 & 4, Teralba

Sample Details

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Client ID</th>
<th>Date Sampled</th>
<th>Sampling Method</th>
<th>Specification</th>
<th>Source</th>
<th>Location</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW15W-1297--S02</td>
<td></td>
<td>22/06/2015</td>
<td>AS1289.1.2.1 cl 6.5.4</td>
<td>No Specification</td>
<td>On-Site</td>
<td>TP5 - (0.5 - 0.8m)</td>
<td>Sandy Clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Results

<table>
<thead>
<tr>
<th>Tests</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR At 2.5mm (%)</td>
<td>4.0</td>
</tr>
<tr>
<td>Maximum Dry Density (t/m³)</td>
<td>1.64</td>
</tr>
<tr>
<td>Optimum Moisture Content (%)</td>
<td>21.7</td>
</tr>
<tr>
<td>Dry Density before Soaking (t/m³)</td>
<td>1.64</td>
</tr>
<tr>
<td>Density Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Moisture Content before Soaking (%)</td>
<td>21.6</td>
</tr>
<tr>
<td>Moisture Ratio before Soaking (%)</td>
<td>99</td>
</tr>
<tr>
<td>Dry Density after Soaking (t/m³)</td>
<td>1.62</td>
</tr>
<tr>
<td>Density Ratio after Soaking (%)</td>
<td>99</td>
</tr>
<tr>
<td>Swell (%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Moisture Content of Top 30mm (%)</td>
<td>28.7</td>
</tr>
<tr>
<td>Moisture Content of Remaining Depth (%)</td>
<td>22.9</td>
</tr>
</tbody>
</table>

Comments

Moisture Content Method Performed as Per AS1289.2.1.1.
California Bearing Ratio Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Sample Details
Sample ID: NEW15W-1297--S07
Client ID:
Date Sampled: 22/06/2015
Sampling Method: AS1289.1.2.1 cl 6.5.4
Specification: No Specification
Location: TP12 - (0.5 - 0.8m)
Material: Sandy Clay
Date Tested: 30/06/2015

Test Results

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR At 2.5mm (%)</td>
<td>3.5</td>
</tr>
<tr>
<td>Maximum Dry Density (t/m³)</td>
<td>1.53</td>
</tr>
<tr>
<td>Optimum Moisture Content (%)</td>
<td>26.4</td>
</tr>
<tr>
<td>Dry Density before Soaking (t/m³)</td>
<td>1.53</td>
</tr>
<tr>
<td>Density Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Moisture Content before Soaking (%)</td>
<td>26.3</td>
</tr>
<tr>
<td>Moisture Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Dry Density after Soaking (t/m³)</td>
<td>1.51</td>
</tr>
<tr>
<td>Density Ratio after Soaking (%)</td>
<td>99</td>
</tr>
<tr>
<td>Swell (%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Moisture Content of Top 30mm (%)</td>
<td>35.3</td>
</tr>
<tr>
<td>Moisture Content of Remaining Depth (%)</td>
<td>27.8</td>
</tr>
<tr>
<td>Compactive Effort:</td>
<td>Standard</td>
</tr>
<tr>
<td>Surcharge Mass (kg)</td>
<td>9.00</td>
</tr>
<tr>
<td>Period of Soaking (Days)</td>
<td>4</td>
</tr>
<tr>
<td>Oversize Material (%)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Moisture Content Method Performed as Per AS1289.2.1.1.
California Bearing Ratio Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Sample Details
Sample ID: NEW15W-1297--S10
Client ID:
Date Sampled: 22/06/2015
Sampling Method: AS1289.1.2.1 cl 6.5.4
Specification: No Specification
Location: TP14 - (0.3 - 0.6m)
Date Tested: 30/06/2015

Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR At 2.5mm (%)</td>
<td>9</td>
</tr>
<tr>
<td>Maximum Dry Density (t/m³)</td>
<td>1.69</td>
</tr>
<tr>
<td>Optimum Moisture Content (%)</td>
<td>18.6</td>
</tr>
<tr>
<td>Dry Density before Soaking (t/m³)</td>
<td>1.69</td>
</tr>
<tr>
<td>Density Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Moisture Content before Soaking (%)</td>
<td>18.5</td>
</tr>
<tr>
<td>Moisture Ratio before Soaking (%)</td>
<td>99</td>
</tr>
<tr>
<td>Dry Density after Soaking (t/m³)</td>
<td>1.68</td>
</tr>
<tr>
<td>Density Ratio after Soaking (%)</td>
<td>99</td>
</tr>
<tr>
<td>Swell (%)</td>
<td>0.5</td>
</tr>
<tr>
<td>Moisture Content of Top 30mm (%)</td>
<td>23.4</td>
</tr>
<tr>
<td>Moisture Content of Remaining Depth (%)</td>
<td>19.9</td>
</tr>
<tr>
<td>Compactive Effort:</td>
<td>Standard</td>
</tr>
<tr>
<td>Surcharge Mass (kg):</td>
<td>9.00</td>
</tr>
<tr>
<td>Period of Soaking (Days):</td>
<td>4</td>
</tr>
<tr>
<td>Oversize Material (%)</td>
<td>0.0</td>
</tr>
<tr>
<td>Moisture Content</td>
<td></td>
</tr>
<tr>
<td>Field Moisture Content (%)</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Comments
Moisture Content Method Performed as Per AS1289.2.1.1.
California Bearing Ratio Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Sample Details
Sample ID: NEW15W-1297--S12
Client ID:
Date Sampled: 22/06/2015
Sampling Method: AS1289.1.2.1 cl 6.5.4
Specification: No Specification
Location: TP17 - (0.4 - 0.8m)
Material: Sandy Clay
Date Tested: 30/06/2015

Test Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR At 5.0mm (%)</td>
<td>7</td>
</tr>
<tr>
<td>Maximum Dry Density (t/m³):</td>
<td>1.82</td>
</tr>
<tr>
<td>Optimum Moisture Content (%)</td>
<td>14.6</td>
</tr>
<tr>
<td>Dry Density before Soaking (t/m³):</td>
<td>1.81</td>
</tr>
<tr>
<td>Density Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Moisture Content before Soaking (%)</td>
<td>14.7</td>
</tr>
<tr>
<td>Moisture Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Dry Density after Soaking (t/m³):</td>
<td>1.81</td>
</tr>
<tr>
<td>Density Ratio after Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Swell (%)</td>
<td>0.0</td>
</tr>
<tr>
<td>Moisture Content of Top 30mm (%)</td>
<td>19.8</td>
</tr>
<tr>
<td>Moisture Content of Remaining Depth (%)</td>
<td>16.1</td>
</tr>
<tr>
<td>Swell (%)</td>
<td>Standard</td>
</tr>
<tr>
<td>Surcharge Mass (kg):</td>
<td>9.00</td>
</tr>
<tr>
<td>Period of Soaking (Days):</td>
<td>4</td>
</tr>
<tr>
<td>Oversize Material (%)</td>
<td>0.0</td>
</tr>
<tr>
<td>Moisture Content (%)</td>
<td></td>
</tr>
<tr>
<td>Field Moisture Content (%)</td>
<td>15.1</td>
</tr>
</tbody>
</table>

Comments
Moisture Content Method Performed as Per AS1289.2.1.1.
California Bearing Ratio Test Report

Sample Details

Sample ID: NEW15W-1297--S13
Client ID:
Date Sampled: 22/06/2015
Sampling Method: AS1289.1.2.1 cl 6.5.4
Specification: No Specification
Location: TP18 - (0.4 - 0.7m)
Date Tested: 30/06/2015

Test Results

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR At 2.5mm (%)</td>
<td>6</td>
</tr>
<tr>
<td>Maximum Dry Density (t/m³)</td>
<td>1.57</td>
</tr>
<tr>
<td>Optimum Moisture Content (%)</td>
<td>23.8</td>
</tr>
<tr>
<td>Dry Density before Soaking (t/m³)</td>
<td>1.57</td>
</tr>
<tr>
<td>Density Ratio before Soaking (%)</td>
<td>100</td>
</tr>
<tr>
<td>Moisture Content before Soaking (%)</td>
<td>24.1</td>
</tr>
<tr>
<td>Moisture Ratio before Soaking (%)</td>
<td>101</td>
</tr>
<tr>
<td>Dry Density after Soaking (t/m³)</td>
<td>1.55</td>
</tr>
<tr>
<td>Density Ratio after Soaking (%)</td>
<td>99</td>
</tr>
<tr>
<td>Swell (%)</td>
<td>0.5</td>
</tr>
<tr>
<td>Moisture Content of Top 30mm (%)</td>
<td>30.5</td>
</tr>
<tr>
<td>Moisture Content of Remaining Depth (%)</td>
<td>25.4</td>
</tr>
<tr>
<td>Compactive Effort:</td>
<td>Standard</td>
</tr>
<tr>
<td>Surcharge Mass (kg):</td>
<td>9.00</td>
</tr>
<tr>
<td>Period of Soaking (Days):</td>
<td>4</td>
</tr>
<tr>
<td>Oversize Material (%)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Field Moisture Content (%): 28.6

Moisture Content Method Performed as Per AS1289.2.1.1.
Shrink Swell Index Report

Sample Details
- **Sample ID:** NEW15W-1297--S05
- **Material:** Sandy Clay
- **Sample Location:** TP9 - (0.4 - 0.7m)
- **Borehole Number:** TP9
- **Borehole Depth (m):** 0.4 - 0.7m

Swell Test

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swell on Saturation (%)</td>
<td>0.5</td>
</tr>
<tr>
<td>Moisture Content before (%)</td>
<td>29.5</td>
</tr>
<tr>
<td>Moisture Content after (%)</td>
<td>31.6</td>
</tr>
<tr>
<td>Est. Unc. Comp. Strength before (kPa)</td>
<td>250</td>
</tr>
<tr>
<td>Est. Unc. Comp. Strength after (kPa)</td>
<td>150</td>
</tr>
</tbody>
</table>

Shrink Test

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrink on drying (%)</td>
<td>7.1</td>
</tr>
<tr>
<td>Shrinkage Moisture Content (%)</td>
<td>30.2</td>
</tr>
<tr>
<td>Est. inert material (%)</td>
<td>0</td>
</tr>
<tr>
<td>Crumbling during shrinkage</td>
<td>Nill</td>
</tr>
<tr>
<td>Cracking during shrinkage</td>
<td>Nill</td>
</tr>
</tbody>
</table>

Shrink Swell Index - Iss (%): 4.1

Comments
Shrink Swell Index Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Sample Details

<table>
<thead>
<tr>
<th>Sample Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID:</td>
<td>NEW15W-1297--S06</td>
</tr>
<tr>
<td>Test Request No.:</td>
<td>NEW15P-0070</td>
</tr>
<tr>
<td>Material:</td>
<td>Sandy Clay</td>
</tr>
<tr>
<td>Source:</td>
<td>On-Site</td>
</tr>
<tr>
<td>Specification:</td>
<td>No Specification</td>
</tr>
<tr>
<td>Project Location:</td>
<td>Pitt Street, Teralba</td>
</tr>
<tr>
<td>Sample Location:</td>
<td>TP11 - (0.5 - 0.8m)</td>
</tr>
<tr>
<td>Borehole Number:</td>
<td>TP11</td>
</tr>
<tr>
<td>Borehole Depth (m):</td>
<td>0.5 - 0.8m</td>
</tr>
</tbody>
</table>

Swell Test - AS 1289.7.1.1

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swell on Saturation (%)</td>
<td>-0.4</td>
</tr>
<tr>
<td>Moisture Content before (%)</td>
<td>22.2</td>
</tr>
<tr>
<td>Moisture Content after (%)</td>
<td>22.5</td>
</tr>
<tr>
<td>Est. Unc. Comp. Strength before (kPa):</td>
<td>450</td>
</tr>
<tr>
<td>Est. Unc. Comp. Strength after (kPa):</td>
<td>400</td>
</tr>
</tbody>
</table>

Shrink Test - AS 1289.7.1.1

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrink on drying (%)</td>
<td>2.9</td>
</tr>
<tr>
<td>Shrinkage Moisture Content (%)</td>
<td>21.9</td>
</tr>
<tr>
<td>Est. inert material (%)</td>
<td>1</td>
</tr>
<tr>
<td>Crumbling during shrinkage:</td>
<td>0</td>
</tr>
<tr>
<td>Cracking during shrinkage:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

Shrink Swell

- Shrinkage
- Swell

Shrink Swell Index - Iss (%): 1.6

Comments
Shrink Swell Index Report

Client: McCLOY GROUP
Address: Suite 1, Level 3, 426 King Street, Newcastle West NSW 2300

Principal:
Project No.: NEW15P-0070
Project Name: Proposed Subdivision - Stage 3 & 4, Teralba

Sample Details
- **Sample ID:** NEW15W-1297--S08
- **Client Sample ID:** AS1289.1.2.1 cl 6.5.4
- **Date Sampled:** 22/06/2015
- **Date Submitted:** 24/06/2015
- **Sampling Method:** AS1289.1.2.1 cl 6.5.4
- **Material:** Sandy Clay
- **Source:** On-Site
- **Specification:** No Specification
- **Project Location:** Pitt Street, Teralba
- **Sample Location:** TP13 - (0.4 - 0.7m)
- **Borehole Number:** TP13
- **Borehole Depth (m):** 0.4 - 0.7m

Test Results

Swell Test - AS 1289.7.1.1
- **Swell on Saturation (%):** -0.3
- **Moisture Content before (%):** 17.0
- **Moisture Content after (%):** 20.9
- **Est. Unc. Comp. Strength before (kPa):** 250
- **Est. Unc. Comp. Strength after (kPa):** 200

Shrink Test - AS 1289.7.1.1
- **Shrink on drying (%):** 2.0
- **Shrinkage Moisture Content (%):** 16.6
- **Est. inert material (%):** 0
- **Crumbling during shrinkage:** Nil
- **Cracking during shrinkage:** Nil

Shrink Swell

Shrink Swell Index - Iss (%): 1.1

Comments

Report No: SSI:NEW15W-1297--S08
Issue No: 1

NATA Accredited Laboratory Number: 18666

Date of Issue: 3/07/2015

Principal Geotechnician: Alan Cullen

Client: McCLOY GROUP
Address: Suite 1, Level 3, 426 King Street, Newcastle West NSW 2300

Project Name: Proposed Subdivision - Stage 3 & 4, Teralba

Form No: 18932, Report No: SSI:NEW15W-1297--S08
© 2000-2013 QESTLab by SpectraQEST.com
© 2000-2013 QESTLab by SpectraQEST.com
Page 1 of 1
Shrink Swell Index Report

Sample Details
Sample ID: NEW15W-1297--S09
Client Sample ID: AS1289.1.2.1 cl 6.5.4
Test Request No.: 22/06/2015
Client Sample ID: 22/06/2015
Material: Sandy Clay
Date Submitted: 24/06/2015
Source: On-Site
Date Sampled: 22/06/2015
Specification: No Specification
Date Submitted: 24/06/2015
Project Location: Pitt Street, Teralba
Sample Location: TP13 - (1.1 - 1.4m)
Borehole Number: TP13
Borehole Depth (m): 1.1 - 1.4m

Shrink Test
Shrink on drying (%): 0.9
Shrinkage Moisture Content (%): 12.9
Est. inert material (%): 0
Crumbling during shrinkage: Minor
Cracking during shrinkage: Minor

Swell Test
Swell on Saturation (%): 0.3
Moisture Content before (%): 13.5
Moisture Content after (%): 16.2
Est. Unc. Comp. Strength before (kPa): 600+
Est. Unc. Comp. Strength after (kPa): 550

Shrink Swell Index - Iss (%): 0.6

Comments
Shrink Swell Index Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Sample Details
Sample ID: NEW15W-1297--S11
Test Request No.:
Material: Sandy Clay
Source: On-Site
Specification: No Specification
Project Location: Pitt Street, Teralba
Sample Location: TP15 - (0.4 - 0.7m)
Borehole Number: TP15
Borehole Depth (m): 0.4 - 0.7m

Swell Test - AS 1289.7.1.1
Swell on Saturation (%): -0.7
Moisture Content before (%): 27.3
Moisture Content after (%): 27.3
Est. Unc. Comp. Strength before (kPa): 500
Est. Unc. Comp. Strength after (kPa): 300

Shrink Test - AS 1289.7.1.1
Shrink on drying (%): 3.6
Shrinkage Moisture Content (%): 27.5
Est. inert material (%): 1
Crumbling during shrinkage: 0
Cracking during shrinkage: Nill

Shrink Swell

Shrink Swell Index - Iss (%): 2.0

Comments
Shrink Swell Index Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Principal: Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Sample Details

Sample ID: NEW15W-1297--S14
Client Sample ID: AS1289.1.2.1 cl 6.5.4
Test Request No.: NEW15P-0070
Date Sampled: 22/06/2015
Project Name: Proposed Subdivision - Stage 3 & 4, Teralba
Date Submitted: 24/06/2015
Material: Sandy Clay
Specification: No Specification
Source: On-Site

Sample Location: Pitt Street, Teralba
Borehole Number: TP18
Borehole Depth (m): 0.4 - 0.7m

Swell Test - AS 1289.7.1.1

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swell on Saturation (%)</td>
<td>-0.1</td>
</tr>
<tr>
<td>Moisture Content before (%)</td>
<td>22.1</td>
</tr>
<tr>
<td>Moisture Content after (%)</td>
<td>26.1</td>
</tr>
<tr>
<td>Est. Unc. Comp. Strength before</td>
<td>600+</td>
</tr>
<tr>
<td>(kPa)</td>
<td></td>
</tr>
<tr>
<td>Est. Unc. Comp. Strength after</td>
<td>350</td>
</tr>
<tr>
<td>(kPa)</td>
<td></td>
</tr>
</tbody>
</table>

Shrink Test - AS 1289.7.1.1

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrink on drying (%)</td>
<td>1.7</td>
</tr>
<tr>
<td>Shrinkage Moisture Content (%)</td>
<td>22.5</td>
</tr>
<tr>
<td>Est. inert material (%)</td>
<td>5</td>
</tr>
<tr>
<td>Crumbling during shrinkage</td>
<td>0</td>
</tr>
<tr>
<td>Cracking during shrinkage</td>
<td>Major</td>
</tr>
</tbody>
</table>

Shrink Swell Index - Iss (%): 0.9

Comments
Material Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Principal:

Project No.: NEW15P-0070
Project Name: Proposed Subdivision - Stage 3 & 4, Teralba

Sample Details
Sample ID: NEW15W-1297-S03
Sampling Method: AS1289.1.2.1 cf 6.5.4
Date Sampled: 22/06/2015
Source: On-Site
Material: Sandy Clay
Specification: No Specification
Project Location: Pitt Street, Teralba
Sample Location: TP6 - (0.4 - 0.8m)

Other Test Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Method</th>
<th>Result</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample History</td>
<td>AS 1289.1.1</td>
<td>Air-dried</td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>AS 1289.1.1</td>
<td>Dry Sieved</td>
<td></td>
</tr>
<tr>
<td>Linear Shrinkage (%)</td>
<td>AS 1289.3.4.1</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Mould Length (mm)</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Crumbling</td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Curling</td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Liquid Limit (%)</td>
<td>AS 1289.3.1.1</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td>Four Point</td>
<td></td>
</tr>
<tr>
<td>Plastic Limit (%)</td>
<td>AS 1289.3.2.1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Plasticity Index (%)</td>
<td>AS 1289.3.3.1</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Chart

Comments
N/A
Material Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Principal:

Project No.: NEW15P-0070
Project Name: Proposed Subdivision - Stage 3 & 4, Teralba

Sample Details

Sample ID: NEW15W-1297--S04
Sampling Method: AS1289.1.2.1 cl 6.5.4
Date Sampled: 22/06/2015
Source: On-Site
Material: Sandy Clay
Specification: No Specification
Project Location: Pitt Street, Teralba
Sample Location: TP7 - (0.4 - 0.7m)

Other Test Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Method</th>
<th>Result</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample History</td>
<td>AS 1289.1.1</td>
<td>Air-dried</td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>AS 1289.1.1</td>
<td>Dry Sieved</td>
<td></td>
</tr>
<tr>
<td>Linear Shrinkage (%)</td>
<td>AS 1289.3.4.1</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Mould Length (mm)</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Crumbling</td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Curling</td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Liquid Limit (%)</td>
<td>AS 1289.3.1.1</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td>Four Point</td>
<td></td>
</tr>
<tr>
<td>Plastic Limit (%)</td>
<td>AS 1289.3.2.1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Plasticity Index (%)</td>
<td>AS 1289.3.3.1</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Chart

Comments

N/A
Material Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Principal:
Project No.: NEW15P-0070
Project Name: Proposed Subdivision - Stage 3 & 4, Teralba

Sample Details

<table>
<thead>
<tr>
<th>Sample ID:</th>
<th>NEW15W-1297--S12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Method:</td>
<td>AS1289.1.2.1 cl 6.5.4</td>
</tr>
<tr>
<td>Date Sampled:</td>
<td>22/06/2015</td>
</tr>
<tr>
<td>Source:</td>
<td>On-Site</td>
</tr>
<tr>
<td>Material:</td>
<td>Sandy Clay</td>
</tr>
<tr>
<td>Specification:</td>
<td>No Specification</td>
</tr>
<tr>
<td>Project Location:</td>
<td>Pitt Street, Teralba</td>
</tr>
<tr>
<td>Sample Location:</td>
<td>TP17 - (0.4 - 0.8m)</td>
</tr>
</tbody>
</table>

Other Test Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Method</th>
<th>Result</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Content (%)</td>
<td>AS 1289.2.1.1</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>Sample History</td>
<td>AS 1289.1.1</td>
<td>Air-dried</td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>AS 1289.1.1</td>
<td>Dry Sieved</td>
<td></td>
</tr>
<tr>
<td>Linear Shrinkage (%)</td>
<td>AS 1289.3.4.1</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Mould Length (mm)</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crumbling</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curling</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Limit (%)</td>
<td>AS 1289.3.1.1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Four Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic Limit (%)</td>
<td>AS 1289.3.2.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Plasticity Index (%)</td>
<td>AS 1289.3.3.1</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Standard Maximum Dry Density (t/m³)</td>
<td>AS 1289.5.1.1</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>Standard Optimum Moisture Content (%)</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retained Sieve 19.0mm (%)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compactive Effort</td>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBR At 5.0mm (%)</td>
<td>AS 1289.6.1.1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Maximum Dry Density (t/m³)</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum Moisture Content (%)</td>
<td>14.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Density before Soaking (t/m³)</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density Ratio before Soaking (%)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Content before Soaking (%)</td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Ratio before Soaking (%)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Density after Soaking (t/m³)</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density Ratio after Soaking (%)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swell (%)</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Content of Top 30mm (%)</td>
<td>19.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Content of Remaining Depth (%)</td>
<td>16.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compactive Effort</td>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surcharge Mass (kg)</td>
<td>9.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

N/A

© 2000-2013 QEST Lab by SpectraQEST.com
Material Test Report

Client: McCLOY GROUP
Suite 1, Level 3, 426 King Street
Newcastle West NSW 2300

Principal:

Project No.: NEW15P-0070
Project Name: Proposed Subdivision - Stage 3 & 4, Teralba

Sample Details

<table>
<thead>
<tr>
<th>Sample ID:</th>
<th>NEW15W-1297--S12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Method:</td>
<td>AS1289.1.2.1 cl 6.5.4</td>
</tr>
<tr>
<td>Date Sampled:</td>
<td>22/06/2015</td>
</tr>
<tr>
<td>Source:</td>
<td>On-Site</td>
</tr>
<tr>
<td>Material:</td>
<td>Sandy Clay</td>
</tr>
<tr>
<td>Specification:</td>
<td>No Specification</td>
</tr>
<tr>
<td>Project Location:</td>
<td>Pitt Street, Teralba</td>
</tr>
<tr>
<td>Sample Location:</td>
<td>TP17 - (0.4 - 0.8m)</td>
</tr>
</tbody>
</table>

Other Test Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Method</th>
<th>Result</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period of Soaking (Days)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oversize Material (%)</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

N/A
APPENDIX C:
Results of Previous Investigations by Cardno Geotech Solutions (Ref: CGS1785, dated 19 December 2014)
Test Pit Logs & Results of Laboratory Testing
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>MATERIAL DESCRIPTION</th>
<th>CONSISTENCY</th>
<th>REL DENSITY</th>
<th>ROCK STRENGTH</th>
<th>ROCK WEATHERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>TOPSOIL, Clayey SAND, fine to coarse grained, grey-brown, with gravel and organics</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15m</td>
<td>SANDSTONE, fine to coarse grained, orange-red</td>
<td>XX - DW M - H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40m</td>
<td>Testpit TP201 terminated at 0.40 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refusal
Material Description

Soil Type, plasticity or particle characteristic, colour

- **TOPSOIL**, Clayey SAND, fine to coarse grained, grey-brown, with gravel and organics
- **Sandy CLAY**, medium plasticity, grey-orange mottled red
- **SANDSTONE / SILTSTONE (interbedded)**, fine grained, grey-orange

Rock Type, grain size, colour

- Not Encountered

Secondary and minor components

- Not Applicable

Ground Water Levels

- Not Documented

Samples & Field Tests

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Consistency</th>
<th>Relative Density</th>
<th>Rock Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testpit TP203 terminated at 1.50 m

Refusal

Equipment Type

- **20t Excavator**

Method

- **800mm toothed bucket**

Location

- See Drawing for location

Checked By

- ZO
TESTPIT LOG

Location: Pitt Street, Teralba

Client: McCloy Group Pty Ltd

Project: Geotechnical Investigation

Equipment Type: 20t Excavator

Method: 800mm toothed bucket

Date Excavated: 28/11/14

Logged By: DS

Checked By: ZO

MATERIAL DESCRIPTION

Soil Type, plasticity or particle characteristic, colour
- **TOPSOIL, Gravely Clayey SAND, fine to coarse grained, grey-brown, with organics**
- **Sandy CLAY, low to medium plasticity, grey-orange mottled red**
- **SANDSTONE, fine grained, grey-orange**

Rock Type, grain size, colour
- **Testpit TP205 terminated at 1.00 m Refusal**

Secondary and minor components

CONSISTENCY / REL DENSITY / ROCK STRENGTH

<table>
<thead>
<tr>
<th>CONSISTENCY</th>
<th>REL DENSITY</th>
<th>ROCK STRENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL - Very Loose</td>
<td>EL - Extremely low</td>
<td>RS - Residual soil</td>
</tr>
<tr>
<td>L - Loose</td>
<td>VL - Very low</td>
<td>XW - Extremely weathered</td>
</tr>
<tr>
<td>MD - Medium Dense</td>
<td>L - Low</td>
<td>DW - Distinctly weathered</td>
</tr>
<tr>
<td>D - Dense</td>
<td>M - Medium</td>
<td>SW - Slightly weathered</td>
</tr>
<tr>
<td>VD - Very Dense</td>
<td>H - High</td>
<td>FR - Fresh rock</td>
</tr>
<tr>
<td>H - Hard</td>
<td>VH - Very high</td>
<td></td>
</tr>
<tr>
<td>E - Extreme high</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WATER / MOISTURE

- D - Dry
- M - Moist
- W - Wet
- EL - Extremely low
- VL - Very low
- L - Low
- M - Medium
- H - High
- VH - Very high
- EH - Extremely high

GROUND WATER LEVELS

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>WATER / MOISTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>U - Undisturbed Sample, S - Soft</td>
</tr>
<tr>
<td>0.5</td>
<td>D - Disturbed Sample, F - Firm</td>
</tr>
<tr>
<td>1.0</td>
<td>ES - Environmental sample, St - Stiff</td>
</tr>
<tr>
<td>1.5</td>
<td>B - Bulk Disturbed Sample, VD - Very Dense</td>
</tr>
<tr>
<td>2.0</td>
<td>PPT - Standard Penetration Test, VD - Very Dense</td>
</tr>
</tbody>
</table>

HAND PENETROMETER

- 100 - 200 - 300 - 400 kPa

GRAPHIC LOG

- Dynamic Penetrometer

Checklist: See Drawing for location

Equipment Type: 20t Excavator

Logged By: DS

Checked By: ZO

Date Excavated: 28/11/14

Location: Pitt Street, Teralba

Project: Geotechnical Investigation

Project Ref: CGS1785

Hole No: TP205

Classifications:

- Consistency:
- Relative Density:
- Rock Strength:
- Rock Weathering:

Samples & Field Tests

- Consistency:
- Relative Density:
- Rock Strength:
- Rock Weathering:

Note: See Explanatory Notes for details of abbreviations & basis of descriptions.
MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>SAMPLES & FIELD TESTS</th>
<th>CONSISTENCY</th>
<th>RELATIVE DENSITY</th>
<th>ROCK STRENGTH</th>
<th>ROCK WEATHERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPSOIL, Gravely Clayey SAND, fine to coarse grained, grey-brown, with organics</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravely Sandy CLAY, medium plasticity, grey-orange mottled red</td>
<td>MC < PL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANDSTONE / SILTSTONE (interbedded), fine grained, grey-orange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSISTENCY

- VS - Very Soft
- S - Soft
- F - Firm
- St - Stiff
- VSt - Very Stiff
- H - Hard

RELATIVE DENSITY

- VL - Very Loose
- L - Loose
- MD - Medium Dense
- D - Dense
- VD - Very Dense

ROCK STRENGTH

- EL - Extremely low
- L - Low
- M - Medium
- H - High
- VH - Very high
- EH - Extremely high

ROCK WEATHERING

- RS - Residual soil
- XW - Extremely weathered
- DW - Distinctly weathered
- SW - Slightly weathered
- FR - Fresh rock

NOTE: See Explanatory Notes for details of abbreviations & basis of descriptions.

TESTPIT LOG

DATE EXCAVATED: 28/11/14

LOGGED BY: DS

CHECKED BY: ZO

EQUIPMENT TYPE: 20t Excavator

METHOD: 800mm toothed bucket

WATER / MOISTURE

- D - Dry
- M - Moist
- W - Wet
- OMC - Optimum MC
- PL - Plastic Limit
- HP - Hand/Pocket Penetrometer
- Water inflow

GLITCHES & OTHER OBSERVATIONS

- Testpit TP206 terminated at 1.50 m
- Refusal

GROUND WATER LEVELS

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLES & FIELD TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STRUCTURE & OTHER OBSERVATIONS

LOCATION: See Drawing for location

FILE: CGS1785 TP206 Page 1 OF 1
California Bearing Ratio Report (1 Point)

<table>
<thead>
<tr>
<th>Client:</th>
<th>McCorm Group Pty Ltd</th>
<th>Report Number:</th>
<th>CGS/1785 - 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client address:</td>
<td>PO Box 2214 Dangar NSW 2309</td>
<td>Report Date:</td>
<td>17/12/2014</td>
</tr>
<tr>
<td>Job Number:</td>
<td>CGS/1785</td>
<td>Order Number:</td>
<td>-</td>
</tr>
<tr>
<td>Project:</td>
<td>Geotechnical Investigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>Stage 2 Pitt Street, Teralba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab No: 14/11798</td>
<td>Sample Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Sampled:</td>
<td>28/11/2014</td>
<td>Pit No. TP203</td>
<td></td>
</tr>
<tr>
<td>Date Tested:</td>
<td>13/12/2014</td>
<td>Sample Type B</td>
<td></td>
</tr>
<tr>
<td>Sampled By:</td>
<td>Dimce Stojanovski</td>
<td>Sample Depth:</td>
<td>0.40-0.80m</td>
</tr>
<tr>
<td>Sample Method:</td>
<td>AS1289.1.2.1 c6.5.4 Backhoe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Source:</td>
<td>In situ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Use As:</td>
<td>-</td>
<td>Lot Number:</td>
<td>-</td>
</tr>
<tr>
<td>Remarks:</td>
<td>-</td>
<td>Item Number:</td>
<td>-</td>
</tr>
</tbody>
</table>

Soil Description
- SILSTONE/SANDSTONE grey-orange

Test Conditions
- Test Condition (Soaked/Unsoaked): Soaked / 4 days
- Soak Period (Days): 4
- Oversize: 28%
- Swell (%) / Surchage (kg): 0.5 / 4.5 kg
- CBR Value (%): 11

Test Results
- Maximum Dry Density - MDD (t/m³): 1.86
- Dry Density after Soak (t/m³): 1.86
- Optimum Moisture Content - OMC (%): 14.2
- Moisture Content after Soak (%) : 14.3
- Compactive Effort: Standard
- Density Ratio after Soak (%): 100
- Nominated % Maximum Dry Density Compaction: 100
- Field Moisture Content (%): 9.6
- Nominated % Optimum Moisture Content Compaction: 100
- Moisture Content (Top) after Penetration (%): 15.7
- Achieved Dry Density before Soak (t/m³): 1.87
- Moisture Content (Total) after Penetration (%): 14.9
- Achieved Percentage of Maximum Dry Density (%): 101
- CBR 2.5mm (%): 9
- Achieved Moisture Content (%): 13.5
- CBR 5.0mm (%): 11
- Achieved Percentage of Optimum Moisture Content (%): 95
- Minimum Specified CBR Value (%): -
- Test Condition (Soaked/Unsoaked) / Soaking Period (Days): Soaked / 4 days
- Swell (%) / Surchage (kg): 0.5 / 4.5 kg
- CBR Value (%): 11

This document is issued in accordance with NATA's accreditation requirements.

Approved Signatory:

Ian Piper
NATA Accred No: 15689

Form Number: RP29-3
California Bearing Ratio Report (1 Point)

Client: McCloy Group Pty Ltd
Client address: PO Box 2214 Dangar NSW 2309
Job Number: CGS/1785
Project: Geotechnical Investigation
Location: Stage 2 Pitt Street, Teralba

Lab No: 14/11800
Date Sampled: 28/11/2014
Date Tested: 12/12/2014
Sampled By: Dimce Stojanovski
Sample Method: AS1289.1.2.1 c6.5.4 Backhoe
Material Source: In situ
Test Method: AS1289.5.1.1 & AS1289.6.1.1
Remarks:

<table>
<thead>
<tr>
<th>Soil Description:</th>
<th>SILSTONE/SANDSTONE grey-orange</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Test Condition (Soaked/Unsoaked) / Soaking Period (Days):</th>
<th>Moisture Content (Total) after Penetration (%) :</th>
<th>CBR Value (%) :</th>
<th>Silica (%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soaked / 4 days</td>
<td>15</td>
<td>17</td>
<td>3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum Dry Density - MDD (t/m³) :</th>
<th>Dry Density after Soak (t/m³) :</th>
<th>Moisture Content after Soak (%) :</th>
<th>Density Ratio after Soak (%) :</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.78</td>
<td>1.74</td>
<td>17.9</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compactive Effort :</th>
<th>Standard Compaction (%) :</th>
<th>Field Moisture Content (%) :</th>
<th>Moisture Content (%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>11.6</td>
<td>15</td>
<td>96.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominated % Maximum Dry Density Compaction :</th>
<th>Nominated % Optimum Moisture Content Compaction :</th>
<th>Moisture Content after Penetration (%) :</th>
<th>CBR Value (%) :</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.79</td>
<td>14.9</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Achieved Dry Density before Soak (t/m³) :</th>
<th>Moisture Content (Top) after Penetration (%) :</th>
<th>CBR 2.5mm (%) :</th>
<th>CBR 5.0mm (%) :</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.79</td>
<td>101</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Achieved Moisture Content (%) :</th>
<th>Minimum Specified CBR Value (%) :</th>
<th>Swell (%) / Surcharge (kg):</th>
<th>Approved Signatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.9</td>
<td>-</td>
<td>3.0 / 4.5 kg</td>
<td>Ian Piper NATA Acc No:15689</td>
</tr>
</tbody>
</table>

This document is issued in accordance with NATA's accreditation requirements.
APPENDIX D:
CSIRO Sheet BTF 18
Foundation Maintenance and Footing Performance: A Homeowner’s Guide
Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction
There are two types of settlement that occur as a result of construction:
• Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
• Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil’s lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion
All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation
This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil
All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

Shear failure
This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:
• Significant load increase.
• Reduction of lateral support of the soil under the footing due to erosion or excavation.
• In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

Table: General Definitions of Site Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Most sand and rock sites with little or no ground movement from moisture changes</td>
</tr>
<tr>
<td>S</td>
<td>Slightly reactive clay sites with only slight ground movement from moisture changes</td>
</tr>
<tr>
<td>M</td>
<td>Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes</td>
</tr>
<tr>
<td>H</td>
<td>Highly reactive clay sites, which can experience high ground movement from moisture changes</td>
</tr>
<tr>
<td>E</td>
<td>Extremely reactive sites, which can experience extreme ground movement from moisture changes</td>
</tr>
<tr>
<td>A to P</td>
<td>Filled sites</td>
</tr>
<tr>
<td>P</td>
<td>Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise</td>
</tr>
</tbody>
</table>

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.
Trees can cause shrinkage and damage

Effects of Uneven Soil Movement on Structures

Erosion and saturation
Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay
Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible doming of flooring, sometimes rattling ornaments etc.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's heat is greatest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the exterior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots
In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself
Most forces that the soil causes to be exerted on structures are vertical - i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures
Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased. With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Uphozal caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

Tree root growth
Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement
The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation
Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay
Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible doming of flooring.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.
The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures
Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures
Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage
Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:
- Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.
- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking
In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870. AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

Prevention/Cure

Plumbing
Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation’s ability to support footings or even gain entry to the subfloor area.

Ground drainage
In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

Protection of the building perimeter
It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

<table>
<thead>
<tr>
<th>Description of typical damage and required repair</th>
<th>Approximate crack width limit (see Note 3)</th>
<th>Damage category</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Airline cracks</td>
<td><0.1 mm</td>
<td>0</td>
</tr>
<tr>
<td>Fine cracks which do not need repair</td>
<td><4 mm</td>
<td>1</td>
</tr>
<tr>
<td>Cracks noticeable but easily filled. Doors and windows stick slightly</td>
<td><5 mm</td>
<td>2</td>
</tr>
<tr>
<td>Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weather tightness often impaired</td>
<td>5–15 mm (or a number of cracks 3 mm or more in one group)</td>
<td>3</td>
</tr>
<tr>
<td>Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted</td>
<td>15–25 mm but also depend on number of cracks</td>
<td>4</td>
</tr>
</tbody>
</table>
should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building—preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living area. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published. The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject. Further professional advice needs to be obtained before taking any action based on the information provided.